Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:009414274d80dae71ce8dc41f9fb939f00dc130b
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
#' General purpose plotting function for cutpointr or roc_cutpointr objects
#'
#' Flexibly plot various metrics against all cutpoints or any other metric.
#' The function can plot any metric based on a \code{cutpointr} or \code{roc_cutpointr}
#' object. If \code{cutpointr} was run with bootstrapping, bootstrapped confidence
#' intervals can be plotted. These represent the quantiles of the distribution
#' of the y-variable grouped by x-variable over all bootstrap repetitions.
#'
#' The arguments to \code{xvar} and \code{yvar} should be metric functions. Any metric
#' function that is suitable for \code{cutpointr} can also be used in \code{plot_cutpointr}.
#' Anonymous functions are also allowed.
#' To plot all possible cutpoints, the utility function \code{cutpoint} can be used.
#'
#' The functions for \code{xvar} and \code{yvar} may accept any or all of the arguments
#' \code{tp}, \code{fp}, \code{tn}, or \code{fn} and return a numeric vector,
#' a matrix or a \code{data.frame}.
#' For more details on metric functions see \code{vignette("cutpointr")}.
#'
#' Note that confidence intervals can only be correctly plotted if the values of \code{xvar}
#' are constant across bootstrap samples. For example, confidence intervals for
#' \code{tpr} by \code{fpr} (a ROC curve) cannot be plotted, as the values of the false positive
#' rate vary per bootstrap sample.
#'
#' @param x A \code{cutpointr} or \code{roc_cutpointr} object.
#' @param xvar A function, typically \code{cutpoint} or a metric function.
#' @param yvar A function, typically a metric function.
#' @param conf_lvl (numeric) If bootstrapping was run and x is a cutpointr object,
#' a confidence interval at the level of conf_lvl can be plotted. To plot no
#' confidence interval set conf_lvl = 0.
#' @param aspect_ratio (numeric) Set to 1 to obtain a quadratic plot, e.g. for
#' plotting a ROC curve.
#'
#' @examples
#' set.seed(1)
#' oc <- cutpointr(suicide, dsi, suicide, boot_runs = 10)
#'
#' plot_cutpointr(oc, cutpoint, F1_score)
#'
#' ## ROC curve
#' plot_cutpointr(oc, fpr, tpr, aspect_ratio = 1)
#'
#' ## Custom function
#' plot_cutpointr(oc, cutpoint, function(tp, tn, fp, fn, ...) tp / fp) +
#'   ggplot2::ggtitle("Custom metric") + ggplot2::ylab("value")
#'
#' @family cutpointr plotting functions
#' @export
plot_cutpointr <- function(x, xvar = cutpoint, yvar = sum_sens_spec,
                           conf_lvl = 0.95, aspect_ratio = NULL) {
    stopifnot("cutpointr" %in% class(x) | "roc_cutpointr" %in% class(x))
    if ("cutpointr" %in% class(x)) {
        rocdat <- x$roc_curve
        subgroup <- suppressWarnings(x$subgroup)
    } else {
        rocdat <- list(x)
        subgroup <- NULL
    }

    xvar_name <- paste(as.character(substitute(xvar)), collapse = " ")
    yvar_name <- paste(as.character(substitute(yvar)), collapse = " ")
    xvar_name_plotlabel <- xvar_name
    yvar_name_plotlabel <- yvar_name
    rocdat <- purrr::map(.x = rocdat, .f = function(x) {
        met <- xvar(x = x, tp = x$tp, fp = x$fp, tn = x$tn, fn = x$fn)
        met_name <- colnames(met)
        if (is.null(met_name)) {
            met_name <- xvar_name
        } else {
            xvar_name <<- met_name
            xvar_name_plotlabel <<- met_name
        }
        met <- sanitize_metric(met, m_name = met_name, n = nrow(x))
        met <- check_metric_name(met)
        xvar_name <<- colnames(met)
        x <- dplyr::bind_cols(x, tibble::as_data_frame(met))
        x
    })
    rocdat <- purrr::map(.x = rocdat, .f = function(x) {
        met <- yvar(x = x, tp = x$tp, fp = x$fp, tn = x$tn, fn = x$fn)
        met_name <- colnames(met)

        if (is.null(met_name)) {
            met_name <- xvar_name
        } else {
            yvar_name <<- met_name
            yvar_name_plotlabel <<- met_name
        }
        met <- sanitize_metric(met, m_name = yvar_name, n = nrow(x))
        met <- check_metric_name(met)
        yvar_name <<- colnames(met)
        x <- dplyr::bind_cols(x, tibble::as_data_frame(met))
        x
    })

    if (has_boot_results(x) & conf_lvl != 0) {
        # Add xvar and yvar columns to ROC curves of bootstrap repetitions
        for (i in 1:nrow(x)) {
            x[["boot"]][[i]]$roc_curve_b <- purrr::map(x[["boot"]][[i]]$roc_curve_b, function(x) {
                met <- xvar(x = x, tp = x$tp, fp = x$fp, tn = x$tn, fn = x$fn)
                met <- sanitize_metric(met, m_name = xvar_name, n = nrow(x),
                                                   silent = TRUE)
                met <- check_metric_name(met)
                x <- dplyr::bind_cols(x, tibble::as_data_frame(met))
                met <- yvar(x = x, tp = x$tp, fp = x$fp, tn = x$tn, fn = x$fn)
                met <- sanitize_metric(met, m_name = yvar_name, n = nrow(x),
                                                   silent = TRUE)
                met <- check_metric_name(met)
                x <- dplyr::bind_cols(x, tibble::as_data_frame(met))
                x
            })
            ci <- x[["boot"]][[i]]$roc_curve_b %>%
                dplyr::bind_rows() %>%
                dplyr::select_(.dots = c(xvar_name, yvar_name)) %>%
                dplyr::group_by(!!rlang::sym(xvar_name)) %>%
                dplyr::summarise(ymin = stats::quantile(!!rlang::sym(yvar_name),
                                                        (1 - conf_lvl) / 2, na.rm = TRUE),
                                 ymax = stats::quantile(!!rlang::sym(yvar_name),
                                                        1 - (1 - conf_lvl) / 2, na.rm = TRUE))
            rocdat[[i]] <- dplyr::left_join(rocdat[[i]], ci, by = xvar_name)
            if (any(!(rocdat[[i]][[xvar_name]] %in% ci[[xvar_name]])))
                warning(paste(x$subgroup[i],
                              "Not all x-values in ROC curve could be joined with bootstrap,",
                              "the bootstrap confidence intervals are possibly misleading,",
                              "see ?plot_cutpointr"))
        }
    }

    if ("subgroup" %in% colnames(x)) {
        rocdat <- purrr::map2(subgroup, rocdat, function(s, d) {
            d <- d[is.finite(d[[yvar_name]]), ]
            d <- d[is.finite(d[[xvar_name]]), ]
            d$subgroup <- s
            return(d)
        }) %>%
            dplyr::bind_rows()
        if (has_boot_results(x) & conf_lvl != 0) {
            p <- ggplot2::ggplot(rocdat, ggplot2::aes_string(x = xvar_name,
                                                             y = yvar_name,
                                                             ymax = "ymax",
                                                             ymin = "ymin",
                                                             fill = "subgroup",
                                                             color = "subgroup")) +
                ggplot2::geom_line() +
                ggplot2::geom_ribbon(alpha = 0.2, size = 0) +
                ggplot2::ggtitle(paste(yvar_name_plotlabel, "by", xvar_name_plotlabel),
                                 "in-sample results") +
                ggplot2::ylab(yvar_name_plotlabel) +
                ggplot2::xlab(xvar_name_plotlabel)
        } else {
            p <- ggplot2::ggplot(rocdat, ggplot2::aes_string(x = xvar_name,
                                                                   y = yvar_name,
                                                                   color = "subgroup")) +
                ggplot2::geom_line() +
                ggplot2::ggtitle(paste(yvar_name_plotlabel, "by", xvar_name_plotlabel),
                                 "in-sample results") +
                ggplot2::ylab(yvar_name_plotlabel) +
                ggplot2::xlab(xvar_name_plotlabel)
        }
    } else {
        rocdat <- rocdat[[1]]
        rocdat <- rocdat[is.finite(rocdat[[yvar_name]]), ]
        rocdat <- rocdat[is.finite(rocdat[[xvar_name]]), ]
        if (has_boot_results(x) & conf_lvl != 0) {
            p <- ggplot2::ggplot(rocdat, ggplot2::aes_string(x = xvar_name,
                                                       y = yvar_name,
                                                       ymax = "ymax",
                                                       ymin = "ymin")) +
                ggplot2::geom_line() +
                ggplot2::geom_ribbon(alpha = 0.2, size = 0) +
                ggplot2::ggtitle(paste(yvar_name_plotlabel, "by", xvar_name_plotlabel),
                                 "in-sample results") +
                ggplot2::ylab(yvar_name_plotlabel) +
                ggplot2::xlab(xvar_name_plotlabel)
        } else {
            p <- ggplot2::ggplot(rocdat, ggplot2::aes_string(x = xvar_name,
                                                       y = yvar_name)) +
                ggplot2::geom_line() +
                ggplot2::ggtitle(paste(yvar_name_plotlabel, "by", xvar_name_plotlabel),
                                 "in-sample results") +
                ggplot2::ylab(yvar_name_plotlabel) +
                ggplot2::xlab(xvar_name_plotlabel)
        }
    }
    if (!(is.null(aspect_ratio))) p <- p + ggplot2::theme(aspect.ratio = aspect_ratio)
    return(p)
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top