Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:01705e0b2a6275fd221bc62ce8c15d52cb498b0b

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
# Copyright 2016 James Hensman, Valentine Svensson, alexggmatthews, fujiisoup
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import numpy as np
import tensorflow as tf

import gpflow

from ..base import Parameter
from ..conditionals import conditional
from ..config import default_float, default_jitter
from ..kernels import Kernel
from ..kullback_leiblers import gauss_kl
from ..likelihoods import Likelihood
from ..mean_functions import MeanFunction, Zero
from ..models.model import Data, DataPoint, GPModel, MeanAndVariance
from ..utilities import triangular


class VGP(GPModel):
    r"""
    This method approximates the Gaussian process posterior using a multivariate Gaussian.

    The idea is that the posterior over the function-value vector F is
    approximated by a Gaussian, and the KL divergence is minimised between
    the approximation and the posterior.

    This implementation is equivalent to svgp with X=Z, but is more efficient.
    The whitened representation is used to aid optimization.

    The posterior approximation is

    .. math::

       q(\mathbf f) = N(\mathbf f \,|\, \boldsymbol \mu, \boldsymbol \Sigma)

    """
    def __init__(self,
                 data: Data,
                 kernel: Kernel,
                 likelihood: Likelihood,
                 mean_function: Optional[MeanFunction] = None,
                 num_latent: Optional[int] = None):
        """
        X is a data matrix, size [N, D]
        Y is a data matrix, size [N, R]
        kernel, likelihood, mean_function are appropriate GPflow objects

        """
        super().__init__(kernel, likelihood, mean_function, num_latent)

        x_data, y_data = data
        num_data = x_data.shape[0]
        self.num_data = num_data
        self.num_latent = num_latent or y_data.shape[1]
        self.data = data

        self.q_mu = Parameter(np.zeros((num_data, self.num_latent)))
        q_sqrt = np.array([np.eye(num_data) for _ in range(self.num_latent)])
        self.q_sqrt = Parameter(q_sqrt, transform=triangular())

    def log_likelihood(self):
        r"""
        This method computes the variational lower bound on the likelihood,
        which is:

            E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)]

        with

            q(\mathbf f) = N(\mathbf f \,|\, \boldsymbol \mu, \boldsymbol \Sigma)

        """

        x_data, y_data = self.data
        # Get prior KL.
        KL = gauss_kl(self.q_mu, self.q_sqrt)

        # Get conditionals
        K = self.kernel(x_data) + tf.eye(self.num_data, dtype=default_float()) * default_jitter()
        L = tf.linalg.cholesky(K)
        fmean = tf.linalg.matmul(L, self.q_mu) + self.mean_function(x_data)  # [NN, ND] -> ND
        q_sqrt_dnn = tf.linalg.band_part(self.q_sqrt, -1, 0)  # [D, N, N]
        L_tiled = tf.tile(tf.expand_dims(L, 0), tf.stack([self.num_latent, 1, 1]))
        LTA = tf.linalg.matmul(L_tiled, q_sqrt_dnn)  # [D, N, N]
        fvar = tf.reduce_sum(tf.square(LTA), 2)

        fvar = tf.transpose(fvar)

        # Get variational expectations.
        var_exp = self.likelihood.variational_expectations(fmean, fvar, y_data)

        return tf.reduce_sum(var_exp) - KL

    def predict_f(self, predict_at: DataPoint, full_cov: bool = False,
                  full_output_cov: bool = False) -> MeanAndVariance:
        x_data, _y_data = self.data
        mu, var = conditional(predict_at,
                              x_data,
                              self.kernel,
                              self.q_mu,
                              q_sqrt=self.q_sqrt,
                              full_cov=full_cov,
                              white=True)
        return mu + self.mean_function(predict_at), var


class VGPOpperArchambeau(GPModel):
    r"""
    This method approximates the Gaussian process posterior using a multivariate Gaussian.
    The key reference is:
    ::
      @article{Opper:2009,
          title = {The Variational Gaussian Approximation Revisited},
          author = {Opper, Manfred and Archambeau, Cedric},
          journal = {Neural Comput.},
          year = {2009},
          pages = {786--792},
      }
    The idea is that the posterior over the function-value vector F is
    approximated by a Gaussian, and the KL divergence is minimised between
    the approximation and the posterior. It turns out that the optimal
    posterior precision shares off-diagonal elements with the prior, so
    only the diagonal elements of the precision need be adjusted.
    The posterior approximation is
    .. math::
       q(\mathbf f) = N(\mathbf f \,|\, \mathbf K \boldsymbol \alpha,
                         [\mathbf K^{-1} + \textrm{diag}(\boldsymbol \lambda))^2]^{-1})

    This approach has only 2ND parameters, rather than the N + N^2 of vgp,
    but the optimization is non-convex and in practice may cause difficulty.

    """
    def __init__(self,
                 data: Data,
                 kernel: Kernel,
                 likelihood: Likelihood,
                 mean_function: MeanFunction = None,
                 num_latent: Optional[int] = None):
        """
        X is a data matrix, size [N, D]
        Y is a data matrix, size [N, R]
        kernel, likelihood, mean_function are appropriate GPflow objects
        """
        mean_function = Zero() if mean_function is None else mean_function

        super().__init__(kernel, likelihood, mean_function, num_latent)

        x_data, y_data = data
        self.data = data
        self.num_data = x_data.shape[0]
        self.num_latent = num_latent or y_data.shape[1]
        self.q_alpha = Parameter(np.zeros((self.num_data, self.num_latent)))
        self.q_lambda = Parameter(np.ones((self.num_data, self.num_latent)), transform=gpflow.utilities.positive())

    def log_likelihood(self):
        r"""
        q_alpha, q_lambda are variational parameters, size [N, R]
        This method computes the variational lower bound on the likelihood,
        which is:
            E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)]
        with
            q(f) = N(f | K alpha + mean, [K^-1 + diag(square(lambda))]^-1) .
        """
        x_data, y_data = self.data
        K = self.kernel(x_data)
        K_alpha = tf.linalg.matmul(K, self.q_alpha)
        f_mean = K_alpha + self.mean_function(x_data)

        # compute the variance for each of the outputs
        I = tf.tile(tf.eye(self.num_data, dtype=default_float())[None, ...], [self.num_latent, 1, 1])
        A = I + tf.transpose(self.q_lambda)[:, None, ...] * tf.transpose(self.q_lambda)[:, :, None, ...] * K
        L = tf.linalg.cholesky(A)
        Li = tf.linalg.triangular_solve(L, I)
        tmp = Li / tf.transpose(self.q_lambda)[:, None, ...]
        f_var = 1. / tf.square(self.q_lambda) - tf.transpose(tf.reduce_sum(tf.square(tmp), 1))

        # some statistics about A are used in the KL
        A_logdet = 2.0 * tf.reduce_sum(tf.math.log(tf.linalg.diag_part(L)))
        trAi = tf.reduce_sum(tf.square(Li))

        KL = 0.5 * (A_logdet + trAi - self.num_data * self.num_latent + tf.reduce_sum(K_alpha * self.q_alpha))

        v_exp = self.likelihood.variational_expectations(f_mean, f_var, y_data)
        return tf.reduce_sum(v_exp) - KL

    def predict_f(self, predict_at: DataPoint, full_cov: bool = False, full_output_cov: bool = False):
        r"""
        The posterior variance of F is given by
            q(f) = N(f | K alpha + mean, [K^-1 + diag(lambda**2)]^-1)
        Here we project this to F*, the values of the GP at Xnew which is given
        by
           q(F*) = N ( F* | K_{*F} alpha + mean, K_{**} - K_{*f}[K_{ff} +
                                           diag(lambda**-2)]^-1 K_{f*} )

        Note: This model cuurently does not allow full output covariances
        """
        assert full_output_cov == False

        x_data, _y_data = self.data
        # compute kernel things
        Kx = self.kernel(x_data, predict_at)
        K = self.kernel(x_data)

        # predictive mean
        f_mean = tf.linalg.matmul(Kx, self.q_alpha, transpose_a=True) + self.mean_function(predict_at)

        # predictive var
        A = K + tf.linalg.diag(tf.transpose(1. / tf.square(self.q_lambda)))
        L = tf.linalg.cholesky(A)
        Kx_tiled = tf.tile(Kx[None, ...], [self.num_latent, 1, 1])
        LiKx = tf.linalg.triangular_solve(L, Kx_tiled)
        if full_cov:
            f_var = self.kernel(predict_at) - tf.linalg.matmul(LiKx, LiKx, transpose_a=True)
        else:
            f_var = self.kernel(predict_at, full=False) - tf.reduce_sum(tf.square(LiKx), 1)
        return f_mean, tf.transpose(f_var)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API