# Copyright 2016 James Hensman, Valentine Svensson, alexggmatthews, fujiisoup # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import numpy as np import tensorflow as tf import gpflow from ..base import Parameter from ..conditionals import conditional from ..config import default_float, default_jitter from ..kernels import Kernel from ..kullback_leiblers import gauss_kl from ..likelihoods import Likelihood from ..mean_functions import MeanFunction, Zero from ..models.model import Data, DataPoint, GPModel, MeanAndVariance from ..utilities import triangular class VGP(GPModel): r""" This method approximates the Gaussian process posterior using a multivariate Gaussian. The idea is that the posterior over the function-value vector F is approximated by a Gaussian, and the KL divergence is minimised between the approximation and the posterior. This implementation is equivalent to svgp with X=Z, but is more efficient. The whitened representation is used to aid optimization. The posterior approximation is .. math:: q(\mathbf f) = N(\mathbf f \,|\, \boldsymbol \mu, \boldsymbol \Sigma) """ def __init__(self, data: Data, kernel: Kernel, likelihood: Likelihood, mean_function: Optional[MeanFunction] = None, num_latent: Optional[int] = None): """ X is a data matrix, size [N, D] Y is a data matrix, size [N, R] kernel, likelihood, mean_function are appropriate GPflow objects """ super().__init__(kernel, likelihood, mean_function, num_latent) x_data, y_data = data num_data = x_data.shape[0] self.num_data = num_data self.num_latent = num_latent or y_data.shape[1] self.data = data self.q_mu = Parameter(np.zeros((num_data, self.num_latent))) q_sqrt = np.array([np.eye(num_data) for _ in range(self.num_latent)]) self.q_sqrt = Parameter(q_sqrt, transform=triangular()) def log_likelihood(self): r""" This method computes the variational lower bound on the likelihood, which is: E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)] with q(\mathbf f) = N(\mathbf f \,|\, \boldsymbol \mu, \boldsymbol \Sigma) """ x_data, y_data = self.data # Get prior KL. KL = gauss_kl(self.q_mu, self.q_sqrt) # Get conditionals K = self.kernel(x_data) + tf.eye(self.num_data, dtype=default_float()) * default_jitter() L = tf.linalg.cholesky(K) fmean = tf.linalg.matmul(L, self.q_mu) + self.mean_function(x_data) # [NN, ND] -> ND q_sqrt_dnn = tf.linalg.band_part(self.q_sqrt, -1, 0) # [D, N, N] L_tiled = tf.tile(tf.expand_dims(L, 0), tf.stack([self.num_latent, 1, 1])) LTA = tf.linalg.matmul(L_tiled, q_sqrt_dnn) # [D, N, N] fvar = tf.reduce_sum(tf.square(LTA), 2) fvar = tf.transpose(fvar) # Get variational expectations. var_exp = self.likelihood.variational_expectations(fmean, fvar, y_data) return tf.reduce_sum(var_exp) - KL def predict_f(self, predict_at: DataPoint, full_cov: bool = False, full_output_cov: bool = False) -> MeanAndVariance: x_data, _y_data = self.data mu, var = conditional(predict_at, x_data, self.kernel, self.q_mu, q_sqrt=self.q_sqrt, full_cov=full_cov, white=True) return mu + self.mean_function(predict_at), var class VGPOpperArchambeau(GPModel): r""" This method approximates the Gaussian process posterior using a multivariate Gaussian. The key reference is: :: @article{Opper:2009, title = {The Variational Gaussian Approximation Revisited}, author = {Opper, Manfred and Archambeau, Cedric}, journal = {Neural Comput.}, year = {2009}, pages = {786--792}, } The idea is that the posterior over the function-value vector F is approximated by a Gaussian, and the KL divergence is minimised between the approximation and the posterior. It turns out that the optimal posterior precision shares off-diagonal elements with the prior, so only the diagonal elements of the precision need be adjusted. The posterior approximation is .. math:: q(\mathbf f) = N(\mathbf f \,|\, \mathbf K \boldsymbol \alpha, [\mathbf K^{-1} + \textrm{diag}(\boldsymbol \lambda))^2]^{-1}) This approach has only 2ND parameters, rather than the N + N^2 of vgp, but the optimization is non-convex and in practice may cause difficulty. """ def __init__(self, data: Data, kernel: Kernel, likelihood: Likelihood, mean_function: MeanFunction = None, num_latent: Optional[int] = None): """ X is a data matrix, size [N, D] Y is a data matrix, size [N, R] kernel, likelihood, mean_function are appropriate GPflow objects """ mean_function = Zero() if mean_function is None else mean_function super().__init__(kernel, likelihood, mean_function, num_latent) x_data, y_data = data self.data = data self.num_data = x_data.shape[0] self.num_latent = num_latent or y_data.shape[1] self.q_alpha = Parameter(np.zeros((self.num_data, self.num_latent))) self.q_lambda = Parameter(np.ones((self.num_data, self.num_latent)), transform=gpflow.utilities.positive()) def log_likelihood(self): r""" q_alpha, q_lambda are variational parameters, size [N, R] This method computes the variational lower bound on the likelihood, which is: E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)] with q(f) = N(f | K alpha + mean, [K^-1 + diag(square(lambda))]^-1) . """ x_data, y_data = self.data K = self.kernel(x_data) K_alpha = tf.linalg.matmul(K, self.q_alpha) f_mean = K_alpha + self.mean_function(x_data) # compute the variance for each of the outputs I = tf.tile(tf.eye(self.num_data, dtype=default_float())[None, ...], [self.num_latent, 1, 1]) A = I + tf.transpose(self.q_lambda)[:, None, ...] * tf.transpose(self.q_lambda)[:, :, None, ...] * K L = tf.linalg.cholesky(A) Li = tf.linalg.triangular_solve(L, I) tmp = Li / tf.transpose(self.q_lambda)[:, None, ...] f_var = 1. / tf.square(self.q_lambda) - tf.transpose(tf.reduce_sum(tf.square(tmp), 1)) # some statistics about A are used in the KL A_logdet = 2.0 * tf.reduce_sum(tf.math.log(tf.linalg.diag_part(L))) trAi = tf.reduce_sum(tf.square(Li)) KL = 0.5 * (A_logdet + trAi - self.num_data * self.num_latent + tf.reduce_sum(K_alpha * self.q_alpha)) v_exp = self.likelihood.variational_expectations(f_mean, f_var, y_data) return tf.reduce_sum(v_exp) - KL def predict_f(self, predict_at: DataPoint, full_cov: bool = False, full_output_cov: bool = False): r""" The posterior variance of F is given by q(f) = N(f | K alpha + mean, [K^-1 + diag(lambda**2)]^-1) Here we project this to F*, the values of the GP at Xnew which is given by q(F*) = N ( F* | K_{*F} alpha + mean, K_{**} - K_{*f}[K_{ff} + diag(lambda**-2)]^-1 K_{f*} ) Note: This model cuurently does not allow full output covariances """ assert full_output_cov == False x_data, _y_data = self.data # compute kernel things Kx = self.kernel(x_data, predict_at) K = self.kernel(x_data) # predictive mean f_mean = tf.linalg.matmul(Kx, self.q_alpha, transpose_a=True) + self.mean_function(predict_at) # predictive var A = K + tf.linalg.diag(tf.transpose(1. / tf.square(self.q_lambda))) L = tf.linalg.cholesky(A) Kx_tiled = tf.tile(Kx[None, ...], [self.num_latent, 1, 1]) LiKx = tf.linalg.triangular_solve(L, Kx_tiled) if full_cov: f_var = self.kernel(predict_at) - tf.linalg.matmul(LiKx, LiKx, transpose_a=True) else: f_var = self.kernel(predict_at, full=False) - tf.reduce_sum(tf.square(LiKx), 1) return f_mean, tf.transpose(f_var)