Raw File
#!/usr/bin/env python2.7

#(c) 2013-2014 by Authors
#This file is a part of Ragout program.
#Released under the BSD license (see LICENSE file)

"""
A script for Ragout debug output postprocessing
"""

from __future__ import print_function
import sys, os
import argparse
from collections import namedtuple, defaultdict
from cStringIO import StringIO
from itertools import combinations


import networkx as nx
import pylab
from Bio import Phylo

from utils.nucmer_parser import parse_nucmer_coords
from utils.common import (filter_by_coverage, join_collinear,
                          group_by_chr, get_order, aln_len)

Edge = namedtuple("Edge", ["start", "end"])
Adjacency = namedtuple("Adjacency", ["left", "right", "infinite"])

def verify_alignment(alignment, contigs):
    problematic_contigs = []
    by_name = defaultdict(list)
    for entry in alignment:
        by_name[entry.qry.seq_id].append(entry)
    for name in contigs:
        if len(by_name[name]) > 1:
            hits = list(map(lambda e: (e.ref.start, aln_len(e.qry)),
                            by_name[name]))
            print("WARNING: Duplicated contig", name, hits, file=sys.stderr)
            problematic_contigs.append(name)
        if not by_name[name]:
            print("WARNING: Contig", name, "is not aligned", file=sys.stderr)
            problematic_contigs.append(name)
    return problematic_contigs


def get_true_adjacencies(alignment, contig_permutations,
                         break_contigs, circular):
    by_chr = group_by_chr(alignment)
    adjacencies = []

    for chr_name, entries in by_chr.items():
        prev_block = None
        prev_contig = None

        entries.append(entries[0])
        for hit in entries:
            if prev_contig in break_contigs or hit.qry.seq_id in break_contigs:
                continue

            sign = hit.qry.strand * hit.ref.strand
            blocks = contig_permutations[hit.qry.seq_id]

            if sign < 0:
                blocks = list(map(lambda x: -x, blocks))[::-1]
            if prev_block:
                adjacencies.append(Adjacency(-prev_block, blocks[0], False))
            prev_block = blocks[-1]
            prev_contig = hit.qry.seq_id

        if entries and not circular:
            adjacencies[-1] = Adjacency(adjacencies[-1].left,
                                        adjacencies[-1].right, True)

    return adjacencies


def get_contig_permutations(filename):
    contigs = {}
    for line in open(filename, "r"):
        line = line.strip()
        if not line:
            continue

        if line.startswith(">"):
            name = line[1:]
        else:
            blocks = line.split(" ")[:-1]
            contigs[name] = list(map(int, blocks))
    return contigs


def output_edges(edges, out_file):
    fout = open(out_file, "w")
    fout.write("graph {\n")
    for (v1, v2, inf) in edges:
        label = "oo" if inf else ""
        fout.write("{0} -- {1} [label=\"{2}\"];\n".format(v1, v2, label))
    fout.write("}")


def g2c(genome_id):
    if genome_id not in g2c.table:
        g2c.table[genome_id] = g2c.colors[0]
        g2c.colors = g2c.colors[1:] + g2c.colors[:1] #rotate list
    return g2c.table[genome_id]
g2c.colors = ["green", "blue", "yellow", "cyan", "magenta", "olive"]
g2c.table = {}


def compose_breakpoint_graph(base_dot, predicted_dot, true_edges):
    base_graph = nx.read_dot(base_dot)
    predicted_edges = nx.read_dot(predicted_dot)
    out_graph = nx.MultiGraph()

    for v1, v2, data in base_graph.edges_iter(data=True):
        color = g2c(data["genome_id"])
        label = "oo" if data["infinity"] == "True" else ""
        out_graph.add_edge(v1, v2, color=color, label=label)
    for v1, v2 in predicted_edges.edges_iter():
        out_graph.add_edge(v1, v2, color="red", style="dashed")
    for (v1, v2, infinite) in true_edges:
        label = "oo" if infinite else ""
        out_graph.add_edge(str(v1), str(v2), color="red",
                           style="bold", label=label)

    return out_graph


def output_graph(graph, output_dir, only_predicted):
    MAX_SIZE = 100
    subgraphs = nx.connected_component_subgraphs(graph)
    for comp_id, subgr in enumerate(subgraphs):
        if len(subgr) == 2:
            continue

        if len(subgr) > MAX_SIZE:
            print("Skipped component of size {0}".format(len(subgr)))
            continue

        if only_predicted:
            to_show = False
            for v1, v2, data in subgr.edges_iter(data=True):
                if data.get("style") == "dashed":
                    to_show = True
                    break
            if not to_show:
                continue

        comp_file = os.path.join(output_dir, "comp{0}-bg.png".format(comp_id))
        agraph = nx.to_agraph(subgr)
        agraph.layout(prog="dot")
        agraph.draw(comp_file)


def read_scaffold_file(file):
    scaffold = set()
    with open(file, "r") as input:
        for line in input:
            temp = line.strip('\n ')
            if temp[0] != '>':
                scaffold.add(temp)
    return scaffold


def my_has_path(graph, ordered_contigs, src, dst):
    visited = set()

    def dfs(vertex):
        visited.add(vertex)

        for _, u in graph.edges(vertex):
            if u == dst:
                return True
            elif u not in visited and str(u)[1:] not in ordered_contigs:
                if dfs(u):
                    return True
        return False

    return dfs(src)


def add_overlap_edges(graph, overlap_dot, contigs_file):
    contigs = get_contig_permutations(contigs_file)
    contig_begins = {}
    contig_ends = {}
    for name, blocks in contigs.items():
        contig_begins[blocks[0]] = "+" + name
        contig_begins[-blocks[-1]] = "-" + name
        contig_ends[-blocks[-1]] = "+" + name
        contig_ends[blocks[0]] = "-" + name

    overlap_graph = nx.read_dot(overlap_dot)

    subgraphs = nx.connected_component_subgraphs(graph)
    for subgr in subgraphs:
        for v1, v2 in combinations(subgr.nodes(), 2):
            v1, v2 = int(v1), int(v2)

            if v1 in contig_ends and v2 in contig_begins:
                src = contig_ends[v1]
                dst = contig_begins[v2]
            elif v2 in contig_ends and v1 in contig_begins:
                src = contig_ends[v2]
                dst = contig_begins[v1]
            else:
                continue

            if not (overlap_graph.has_node(src) and
                    overlap_graph.has_node(dst)):
                continue

            if not nx.has_path(overlap_graph, src, dst):
                continue

            if my_has_path(overlap_graph, contigs, src, dst):
                graph.add_edge(str(v1), str(v2), weight=0.1)


def draw_phylogeny(phylogeny_txt, out_file):
    tree_string, target_name = open(phylogeny_txt, "r").read().splitlines()
    g2c.table[target_name] = "red"

    tree_string = tree_string.replace(" ", "")
    tree = Phylo.read(StringIO(tree_string), "newick")
    tree.clade.branch_length = 0
    for clade in tree.find_clades():
        if clade.is_terminal():
            clade.color = g2c(clade.name)
    tree.ladderize()
    pylab.rcParams["lines.linewidth"] = 3.0
    Phylo.draw(tree, do_show=False)

    pylab.savefig(out_file)


def do_job(nucmer_coords, debug_dir, circular, only_predicted):
    used_contigs = os.path.join(debug_dir, "filtered_contigs.txt")
    true_adj_out = os.path.join(debug_dir, "true_edges.dot")
    base_dot = os.path.join(debug_dir, "breakpoint_graph.dot")
    overlap_dot = os.path.join(debug_dir, "../contigs_overlap.dot")
    predicted_dot = os.path.join(debug_dir, "predicted_edges.dot")
    phylogeny_in = os.path.join(debug_dir, "phylogeny.txt")
    phylogeny_out = os.path.join(debug_dir, "phylogeny.png")

    draw_phylogeny(phylogeny_in, phylogeny_out)

    contigs = get_contig_permutations(used_contigs)
    if nucmer_coords != "-":
        alignment = parse_nucmer_coords(nucmer_coords)
        alignment = list(filter(lambda e: e.qry.seq_id in contigs, alignment))
        #alignment = join_collinear(alignment)
        alignment = filter_by_coverage(alignment, 0.7)
        alignment = join_collinear(alignment)
        break_contigs = verify_alignment(alignment, contigs)
        true_adj = get_true_adjacencies(alignment, contigs,
                                        break_contigs, circular)
    else:
        true_adj = []

    output_edges(true_adj, true_adj_out)
    g = compose_breakpoint_graph(base_dot, predicted_dot, true_adj)
    if os.path.exists(overlap_dot):
        add_overlap_edges(g, overlap_dot, used_contigs)
    output_graph(g, debug_dir, only_predicted)


def main():
    descr = ("A script which processes Ragout's debug output and draws some "
            "fancy breakpoint graph pictures. It requires a contigs "
            "alignment on \"true\" reference in nucmer coords format. "
            "Also, Ragout should be run with --debug key to provide "
            "necessary output. Please note, that one should point to "
            "debug dir with a chosen synteny block size (for example "
            "ragout_debug/5000). This script scipt draws only non-trivial "
            "breakpoint graph components.")

    parser = argparse.ArgumentParser(description=descr)
    parser.add_argument("nucmer_coords", metavar="nucmer_coords",
                        help="path to contigs alignment on 'true' reference")
    parser.add_argument("debug_dir", metavar="debug_dir",
                        help="path to debug dir with chosen synteny block size")
    parser.add_argument("--circular", action="store_const", metavar="circular",
                        dest="circular", default=False, const=True,
                        help="indicates that genomes are circular (like bacterial)")
    parser.add_argument("--predicted", action="store_const", metavar="predicted",
                        dest="predicted", default=False, const=True,
                        help="draw only graph components which have predicted edges")
    args = parser.parse_args()

    do_job(args.nucmer_coords, args.debug_dir, args.circular, args.predicted)

if __name__ == "__main__":
    main()
back to top