Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/open-mmlab/Amphion
09 September 2024, 06:46:44 UTC
  • Code
  • Branches (2)
  • Releases (3)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • refs/heads/revert-154-FACodec-readme
    • v0.1.1-alpha
    • v0.1.0-alpha
    • v0.1.0
  • 1e97ea0
  • /
  • models
  • /
  • base
  • /
  • new_inference.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:01dce86d35bd0a04349bdd091537e6a6b0340ac8
origin badgedirectory badge Iframe embedding
swh:1:dir:3d94ed501da5d3fbbeecc0047c44e7dfbdf81979
origin badgerevision badge
swh:1:rev:6f47d3a8cab69b1dfdb354456257b5cf88412c59
origin badgesnapshot badge
swh:1:snp:bef780d851faeac80aef6db569e51e66f505bf34

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 6f47d3a8cab69b1dfdb354456257b5cf88412c59 authored by Xueyao Zhang on 12 March 2024, 11:52:50 UTC
Revert "fix a typo in NS3 readme"
Tip revision: 6f47d3a
new_inference.py
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import random
import re
import time
from abc import abstractmethod
from pathlib import Path

import accelerate
import json5
import numpy as np
import torch
from accelerate.logging import get_logger
from torch.utils.data import DataLoader

from models.vocoders.vocoder_inference import synthesis
from utils.io import save_audio
from utils.util import load_config
from utils.audio_slicer import is_silence

EPS = 1.0e-12


class BaseInference(object):
    def __init__(self, args=None, cfg=None, infer_type="from_dataset"):
        super().__init__()

        start = time.monotonic_ns()
        self.args = args
        self.cfg = cfg

        assert infer_type in ["from_dataset", "from_file"]
        self.infer_type = infer_type

        # init with accelerate
        self.accelerator = accelerate.Accelerator()
        self.accelerator.wait_for_everyone()

        # Use accelerate logger for distributed inference
        with self.accelerator.main_process_first():
            self.logger = get_logger("inference", log_level=args.log_level)

        # Log some info
        self.logger.info("=" * 56)
        self.logger.info("||\t\t" + "New inference process started." + "\t\t||")
        self.logger.info("=" * 56)
        self.logger.info("\n")
        self.logger.debug(f"Using {args.log_level.upper()} logging level.")

        self.acoustics_dir = args.acoustics_dir
        self.logger.debug(f"Acoustic dir: {args.acoustics_dir}")
        self.vocoder_dir = args.vocoder_dir
        self.logger.debug(f"Vocoder dir: {args.vocoder_dir}")
        # should be in svc inferencer
        # self.target_singer = args.target_singer
        # self.logger.info(f"Target singers: {args.target_singer}")
        # self.trans_key = args.trans_key
        # self.logger.info(f"Trans key: {args.trans_key}")

        os.makedirs(args.output_dir, exist_ok=True)

        # set random seed
        with self.accelerator.main_process_first():
            start = time.monotonic_ns()
            self._set_random_seed(self.cfg.train.random_seed)
            end = time.monotonic_ns()
            self.logger.debug(
                f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
            )
            self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")

        # setup data_loader
        with self.accelerator.main_process_first():
            self.logger.info("Building dataset...")
            start = time.monotonic_ns()
            self.test_dataloader = self._build_dataloader()
            end = time.monotonic_ns()
            self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")

        # setup model
        with self.accelerator.main_process_first():
            self.logger.info("Building model...")
            start = time.monotonic_ns()
            self.model = self._build_model()
            end = time.monotonic_ns()
            # self.logger.debug(self.model)
            self.logger.info(f"Building model done in {(end - start) / 1e6:.3f}ms")

        # init with accelerate
        self.logger.info("Initializing accelerate...")
        start = time.monotonic_ns()
        self.accelerator = accelerate.Accelerator()
        self.model = self.accelerator.prepare(self.model)
        end = time.monotonic_ns()
        self.accelerator.wait_for_everyone()
        self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.3f}ms")

        with self.accelerator.main_process_first():
            self.logger.info("Loading checkpoint...")
            start = time.monotonic_ns()
            # TODO: Also, suppose only use latest one yet
            self.__load_model(os.path.join(args.acoustics_dir, "checkpoint"))
            end = time.monotonic_ns()
            self.logger.info(f"Loading checkpoint done in {(end - start) / 1e6:.3f}ms")

        self.model.eval()
        self.accelerator.wait_for_everyone()

    ### Abstract methods ###
    @abstractmethod
    def _build_test_dataset(self):
        pass

    @abstractmethod
    def _build_model(self):
        pass

    @abstractmethod
    @torch.inference_mode()
    def _inference_each_batch(self, batch_data):
        pass

    ### Abstract methods end ###

    @torch.inference_mode()
    def inference(self):
        for i, batch in enumerate(self.test_dataloader):
            y_pred = self._inference_each_batch(batch).cpu()

            # Judge whether the min-max normliazation is used
            if self.cfg.preprocess.use_min_max_norm_mel:
                mel_min, mel_max = self.test_dataset.target_mel_extrema
                y_pred = (y_pred + 1.0) / 2.0 * (mel_max - mel_min + EPS) + mel_min

            y_ls = y_pred.chunk(self.test_batch_size)
            tgt_ls = batch["target_len"].cpu().chunk(self.test_batch_size)
            j = 0
            for it, l in zip(y_ls, tgt_ls):
                l = l.item()
                it = it.squeeze(0)[:l]
                uid = self.test_dataset.metadata[i * self.test_batch_size + j]["Uid"]
                torch.save(it, os.path.join(self.args.output_dir, f"{uid}.pt"))
                j += 1

        vocoder_cfg, vocoder_ckpt = self._parse_vocoder(self.args.vocoder_dir)

        res = synthesis(
            cfg=vocoder_cfg,
            vocoder_weight_file=vocoder_ckpt,
            n_samples=None,
            pred=[
                torch.load(
                    os.path.join(self.args.output_dir, "{}.pt".format(i["Uid"]))
                ).numpy(force=True)
                for i in self.test_dataset.metadata
            ],
        )

        output_audio_files = []
        for it, wav in zip(self.test_dataset.metadata, res):
            uid = it["Uid"]
            file = os.path.join(self.args.output_dir, f"{uid}.wav")
            output_audio_files.append(file)

            wav = wav.numpy(force=True)
            save_audio(
                file,
                wav,
                self.cfg.preprocess.sample_rate,
                add_silence=False,
                turn_up=not is_silence(wav, self.cfg.preprocess.sample_rate),
            )
            os.remove(os.path.join(self.args.output_dir, f"{uid}.pt"))

        return sorted(output_audio_files)

    # TODO: LEGACY CODE
    def _build_dataloader(self):
        datasets, collate = self._build_test_dataset()
        self.test_dataset = datasets(self.args, self.cfg, self.infer_type)
        self.test_collate = collate(self.cfg)
        self.test_batch_size = min(
            self.cfg.train.batch_size, len(self.test_dataset.metadata)
        )
        test_dataloader = DataLoader(
            self.test_dataset,
            collate_fn=self.test_collate,
            num_workers=1,
            batch_size=self.test_batch_size,
            shuffle=False,
        )
        return test_dataloader

    def __load_model(self, checkpoint_dir: str = None, checkpoint_path: str = None):
        r"""Load model from checkpoint. If checkpoint_path is None, it will
        load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
        None, it will load the checkpoint specified by checkpoint_path. **Only use this
        method after** ``accelerator.prepare()``.
        """
        if checkpoint_path is None:
            ls = []
            for i in Path(checkpoint_dir).iterdir():
                if re.match(r"epoch-\d+_step-\d+_loss-[\d.]+", str(i.stem)):
                    ls.append(i)
            ls.sort(
                key=lambda x: int(x.stem.split("_")[-3].split("-")[-1]), reverse=True
            )
            checkpoint_path = ls[0]
        else:
            checkpoint_path = Path(checkpoint_path)
        self.accelerator.load_state(str(checkpoint_path))
        # set epoch and step
        self.epoch = int(checkpoint_path.stem.split("_")[-3].split("-")[-1])
        self.step = int(checkpoint_path.stem.split("_")[-2].split("-")[-1])
        return str(checkpoint_path)

    @staticmethod
    def _set_random_seed(seed):
        r"""Set random seed for all possible random modules."""
        random.seed(seed)
        np.random.seed(seed)
        torch.random.manual_seed(seed)

    @staticmethod
    def _parse_vocoder(vocoder_dir):
        r"""Parse vocoder config"""
        vocoder_dir = os.path.abspath(vocoder_dir)
        ckpt_list = [ckpt for ckpt in Path(vocoder_dir).glob("*.pt")]
        ckpt_list.sort(key=lambda x: int(x.stem), reverse=True)
        ckpt_path = str(ckpt_list[0])
        vocoder_cfg = load_config(
            os.path.join(vocoder_dir, "args.json"), lowercase=True
        )
        return vocoder_cfg, ckpt_path

    @staticmethod
    def __count_parameters(model):
        return sum(p.numel() for p in model.parameters())

    def __dump_cfg(self, path):
        os.makedirs(os.path.dirname(path), exist_ok=True)
        json5.dump(
            self.cfg,
            open(path, "w"),
            indent=4,
            sort_keys=True,
            ensure_ascii=False,
            quote_keys=True,
        )

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API