# This file is a part of Julia. License is MIT: https://julialang.org/license module Sys @doc """ Provide methods for retrieving information about hardware and the operating system. """ Sys export BINDIR, STDLIB, CPU_THREADS, CPU_NAME, WORD_SIZE, ARCH, MACHINE, KERNEL, JIT, cpu_info, cpu_summary, uptime, loadavg, free_memory, total_memory, isapple, isbsd, isdragonfly, isfreebsd, islinux, isnetbsd, isopenbsd, isunix, iswindows, isjsvm, isexecutable, which import ..Base: show global BINDIR = ccall(:jl_get_julia_bindir, Any, ())::String """ Sys.BINDIR A string containing the full path to the directory containing the `julia` executable. """ :BINDIR """ Sys.STDLIB A string containing the full path to the directory containing the `stdlib` packages. """ STDLIB = "$BINDIR/../share/julia/stdlib/v$(VERSION.major).$(VERSION.minor)" # for bootstrap # In case STDLIB change after julia is built, the variable below can be used # to update cached method locations to updated ones. const BUILD_STDLIB_PATH = STDLIB # helper to avoid triggering precompile warnings """ Sys.CPU_THREADS The number of logical CPU cores available in the system, i.e. the number of threads that the CPU can run concurrently. Note that this is not necessarily the number of CPU cores, for example, in the presence of [hyper-threading](https://en.wikipedia.org/wiki/Hyper-threading). See Hwloc.jl or CpuId.jl for extended information, including number of physical cores. """ CPU_THREADS = 1 # for bootstrap, changed on startup """ Sys.ARCH A symbol representing the architecture of the build configuration. """ const ARCH = ccall(:jl_get_ARCH, Any, ()) """ Sys.KERNEL A symbol representing the name of the operating system, as returned by `uname` of the build configuration. """ const KERNEL = ccall(:jl_get_UNAME, Any, ()) """ Sys.MACHINE A string containing the build triple. """ const MACHINE = Base.MACHINE """ Sys.WORD_SIZE Standard word size on the current machine, in bits. """ const WORD_SIZE = Core.sizeof(Int) * 8 function __init__() env_threads = nothing if haskey(ENV, "JULIA_CPU_THREADS") env_threads = ENV["JULIA_CPU_THREADS"] end global CPU_THREADS = if env_threads !== nothing env_threads = tryparse(Int, env_threads) if !(env_threads isa Int && env_threads > 0) env_threads = Int(ccall(:jl_cpu_threads, Int32, ())) Core.print(Core.stderr, "WARNING: couldn't parse `JULIA_CPU_THREADS` environment variable. Defaulting Sys.CPU_THREADS to $env_threads.\n") end env_threads else Int(ccall(:jl_cpu_threads, Int32, ())) end global SC_CLK_TCK = ccall(:jl_SC_CLK_TCK, Clong, ()) global CPU_NAME = ccall(:jl_get_cpu_name, Ref{String}, ()) global JIT = ccall(:jl_get_JIT, Ref{String}, ()) __init_build() nothing end # Populate the paths needed by sysimg compilation, e.g. `generate_precompile.jl`, # without pulling in anything unnecessary like `CPU_NAME` function __init_build() global BINDIR = ccall(:jl_get_julia_bindir, Any, ())::String vers = "v$(VERSION.major).$(VERSION.minor)" global STDLIB = abspath(BINDIR::String, "..", "share", "julia", "stdlib", vers) nothing end mutable struct UV_cpu_info_t model::Ptr{UInt8} speed::Int32 cpu_times!user::UInt64 cpu_times!nice::UInt64 cpu_times!sys::UInt64 cpu_times!idle::UInt64 cpu_times!irq::UInt64 end mutable struct CPUinfo model::String speed::Int32 cpu_times!user::UInt64 cpu_times!nice::UInt64 cpu_times!sys::UInt64 cpu_times!idle::UInt64 cpu_times!irq::UInt64 CPUinfo(model,speed,u,n,s,id,ir)=new(model,speed,u,n,s,id,ir) end CPUinfo(info::UV_cpu_info_t) = CPUinfo(unsafe_string(info.model), info.speed, info.cpu_times!user, info.cpu_times!nice, info.cpu_times!sys, info.cpu_times!idle, info.cpu_times!irq) function _show_cpuinfo(io::IO, info::Sys.CPUinfo, header::Bool=true, prefix::AbstractString=" ") tck = SC_CLK_TCK if header println(io, info.model, ": ") print(io, " "^length(prefix)) println(io, " ", lpad("speed", 5), " ", lpad("user", 9), " ", lpad("nice", 9), " ", lpad("sys", 9), " ", lpad("idle", 9), " ", lpad("irq", 9)) end print(io, prefix) unit = tck > 0 ? " s " : " " tc = max(tck, 1) d(i, unit=unit) = lpad(string(round(Int64,i)), 9) * unit print(io, lpad(string(info.speed), 5), " MHz ", d(info.cpu_times!user / tc), d(info.cpu_times!nice / tc), d(info.cpu_times!sys / tc), d(info.cpu_times!idle / tc), d(info.cpu_times!irq / tc, tck > 0 ? " s" : " ")) if tck <= 0 print(io, "ticks") end end show(io::IO, info::CPUinfo) = _show_cpuinfo(io, info, true, " ") function _cpu_summary(io::IO, cpu::AbstractVector{CPUinfo}, i, j) if j-i < 9 header = true for x = i:j header || println(io) _show_cpuinfo(io, cpu[x], header, "#$(x-i+1) ") header = false end else summary = CPUinfo(cpu[i].model,0,0,0,0,0,0) count = j - i + 1 for x = i:j summary.speed += cpu[i].speed summary.cpu_times!user += cpu[x].cpu_times!user summary.cpu_times!nice += cpu[x].cpu_times!nice summary.cpu_times!sys += cpu[x].cpu_times!sys summary.cpu_times!idle += cpu[x].cpu_times!idle summary.cpu_times!irq += cpu[x].cpu_times!irq end summary.speed = div(summary.speed,count) _show_cpuinfo(io, summary, true, "#1-$(count) ") end println(io) end function cpu_summary(io::IO=stdout, cpu::AbstractVector{CPUinfo} = cpu_info()) model = cpu[1].model first = 1 for i = 2:length(cpu) if model != cpu[i].model _cpu_summary(io, cpu, first, i-1) first = i end end _cpu_summary(io, cpu, first, length(cpu)) end function cpu_info() UVcpus = Ref{Ptr{UV_cpu_info_t}}() count = Ref{Int32}() err = ccall(:uv_cpu_info, Int32, (Ptr{Ptr{UV_cpu_info_t}}, Ptr{Int32}), UVcpus, count) Base.uv_error("uv_cpu_info", err) cpus = Vector{CPUinfo}(undef, count[]) for i = 1:length(cpus) cpus[i] = CPUinfo(unsafe_load(UVcpus[], i)) end ccall(:uv_free_cpu_info, Cvoid, (Ptr{UV_cpu_info_t}, Int32), UVcpus[], count[]) return cpus end """ Sys.uptime() Gets the current system uptime in seconds. """ function uptime() uptime_ = Ref{Float64}() err = ccall(:uv_uptime, Int32, (Ptr{Float64},), uptime_) Base.uv_error("uv_uptime", err) return uptime_[] end """ Sys.loadavg() Get the load average. See: https://en.wikipedia.org/wiki/Load_(computing). """ function loadavg() loadavg_ = Vector{Float64}(undef, 3) ccall(:uv_loadavg, Cvoid, (Ptr{Float64},), loadavg_) return loadavg_ end """ Sys.free_memory() Get the total free memory in RAM in bytes. """ free_memory() = ccall(:uv_get_free_memory, UInt64, ()) """ Sys.total_memory() Get the total memory in RAM (including that which is currently used) in bytes. """ total_memory() = ccall(:uv_get_total_memory, UInt64, ()) """ Sys.get_process_title() Get the process title. On some systems, will always return an empty string. """ function get_process_title() buf = Vector{UInt8}(undef, 512) err = ccall(:uv_get_process_title, Cint, (Ptr{UInt8}, Cint), buf, 512) Base.uv_error("get_process_title", err) return unsafe_string(pointer(buf)) end """ Sys.set_process_title(title::AbstractString) Set the process title. No-op on some operating systems. """ function set_process_title(title::AbstractString) err = ccall(:uv_set_process_title, Cint, (Cstring,), title) Base.uv_error("set_process_title", err) end """ Sys.maxrss() Get the maximum resident set size utilized in bytes. See also: - man page of getrusage(2) on Linux and FreeBSD. - windows api `GetProcessMemoryInfo` """ maxrss() = ccall(:jl_maxrss, Csize_t, ()) """ Sys.isunix([os]) Predicate for testing if the OS provides a Unix-like interface. See documentation in [Handling Operating System Variation](@ref). """ function isunix(os::Symbol) if iswindows(os) return false elseif islinux(os) || isbsd(os) return true elseif os === :Emscripten # Emscripten implements the POSIX ABI and provides traditional # Unix-style operating system functions such as file system support. # Therefor, we consider it a unix, even though this need not be # generally true for a jsvm embedding. return true else throw(ArgumentError("unknown operating system \"$os\"")) end end """ Sys.islinux([os]) Predicate for testing if the OS is a derivative of Linux. See documentation in [Handling Operating System Variation](@ref). """ islinux(os::Symbol) = (os === :Linux) """ Sys.isbsd([os]) Predicate for testing if the OS is a derivative of BSD. See documentation in [Handling Operating System Variation](@ref). !!! note The Darwin kernel descends from BSD, which means that `Sys.isbsd()` is `true` on macOS systems. To exclude macOS from a predicate, use `Sys.isbsd() && !Sys.isapple()`. """ isbsd(os::Symbol) = (isfreebsd(os) || isopenbsd(os) || isnetbsd(os) || isdragonfly(os) || isapple(os)) """ Sys.isfreebsd([os]) Predicate for testing if the OS is a derivative of FreeBSD. See documentation in [Handling Operating System Variation](@ref). !!! note Not to be confused with `Sys.isbsd()`, which is `true` on FreeBSD but also on other BSD-based systems. `Sys.isfreebsd()` refers only to FreeBSD. !!! compat "Julia 1.1" This function requires at least Julia 1.1. """ isfreebsd(os::Symbol) = (os === :FreeBSD) """ Sys.isopenbsd([os]) Predicate for testing if the OS is a derivative of OpenBSD. See documentation in [Handling Operating System Variation](@ref). !!! note Not to be confused with `Sys.isbsd()`, which is `true` on OpenBSD but also on other BSD-based systems. `Sys.isopenbsd()` refers only to OpenBSD. !!! compat "Julia 1.1" This function requires at least Julia 1.1. """ isopenbsd(os::Symbol) = (os === :OpenBSD) """ Sys.isnetbsd([os]) Predicate for testing if the OS is a derivative of NetBSD. See documentation in [Handling Operating System Variation](@ref). !!! note Not to be confused with `Sys.isbsd()`, which is `true` on NetBSD but also on other BSD-based systems. `Sys.isnetbsd()` refers only to NetBSD. !!! compat "Julia 1.1" This function requires at least Julia 1.1. """ isnetbsd(os::Symbol) = (os === :NetBSD) """ Sys.isdragonfly([os]) Predicate for testing if the OS is a derivative of DragonFly BSD. See documentation in [Handling Operating System Variation](@ref). !!! note Not to be confused with `Sys.isbsd()`, which is `true` on DragonFly but also on other BSD-based systems. `Sys.isdragonfly()` refers only to DragonFly. !!! compat "Julia 1.1" This function requires at least Julia 1.1. """ isdragonfly(os::Symbol) = (os === :DragonFly) """ Sys.iswindows([os]) Predicate for testing if the OS is a derivative of Microsoft Windows NT. See documentation in [Handling Operating System Variation](@ref). """ iswindows(os::Symbol) = (os === :Windows || os === :NT) """ Sys.isapple([os]) Predicate for testing if the OS is a derivative of Apple Macintosh OS X or Darwin. See documentation in [Handling Operating System Variation](@ref). """ isapple(os::Symbol) = (os === :Apple || os === :Darwin) """ Sys.isjsvm([os]) Predicate for testing if Julia is running in a JavaScript VM (JSVM), including e.g. a WebAssembly JavaScript embedding in a web browser. !!! compat "Julia 1.2" This function requires at least Julia 1.2. """ isjsvm(os::Symbol) = (os === :Emscripten) for f in (:isunix, :islinux, :isbsd, :isapple, :iswindows, :isfreebsd, :isopenbsd, :isnetbsd, :isdragonfly, :isjsvm) @eval $f() = $(getfield(@__MODULE__, f)(KERNEL)) end if iswindows() function windows_version() verinfo = ccall(:GetVersion, UInt32, ()) VersionNumber(verinfo & 0xFF, (verinfo >> 8) & 0xFF, verinfo >> 16) end else windows_version() = v"0.0" end """ Sys.windows_version() Return the version number for the Windows NT Kernel as a `VersionNumber`, i.e. `v"major.minor.build"`, or `v"0.0.0"` if this is not running on Windows. """ windows_version const WINDOWS_VISTA_VER = v"6.0" """ Sys.isexecutable(path::String) Return `true` if the given `path` has executable permissions. !!! note Prior to Julia 1.6, this did not correctly interrogate filesystem ACLs on Windows, therefore it would return `true` for any file. From Julia 1.6 on, it correctly determines whether the file is marked as executable or not. """ function isexecutable(path::String) # We use `access()` and `X_OK` to determine if a given path is # executable by the current user. `X_OK` comes from `unistd.h`. X_OK = 0x01 return ccall(:jl_fs_access, Cint, (Ptr{UInt8}, Cint), path, X_OK) == 0 end isexecutable(path::AbstractString) = isexecutable(String(path)) """ Sys.which(program_name::String) Given a program name, search the current `PATH` to find the first binary with the proper executable permissions that can be run and return an absolute path to it, or return `nothing` if no such program is available. If a path with a directory in it is passed in for `program_name`, tests that exact path for executable permissions only (with `.exe` and `.com` extensions added on Windows platforms); no searching of `PATH` is performed. """ function which(program_name::String) if isempty(program_name) return nothing end # Build a list of program names that we're going to try program_names = String[] base_pname = basename(program_name) if iswindows() # If the file already has an extension, try that name first if !isempty(splitext(base_pname)[2]) push!(program_names, base_pname) end # But also try appending .exe and .com` for pe in (".exe", ".com") push!(program_names, string(base_pname, pe)) end else # On non-windows, we just always search for what we've been given push!(program_names, base_pname) end path_dirs = String[] program_dirname = dirname(program_name) # If we've been given a path that has a directory name in it, then we # check to see if that path exists. Otherwise, we search the PATH. if isempty(program_dirname) # If we have been given just a program name (not a relative or absolute # path) then we should search `PATH` for it here: pathsep = iswindows() ? ';' : ':' path_dirs = abspath.(split(get(ENV, "PATH", ""), pathsep)) # On windows we always check the current directory as well if iswindows() pushfirst!(path_dirs, pwd()) end else push!(path_dirs, abspath(program_dirname)) end # Here we combine our directories with our program names, searching for the # first match among all combinations. for path_dir in path_dirs for pname in program_names program_path = joinpath(path_dir, pname) # If we find something that matches our name and we can execute if isfile(program_path) && isexecutable(program_path) return program_path end end end # If we couldn't find anything, don't return anything nothing end which(program_name::AbstractString) = which(String(program_name)) end # module Sys