https://github.com/verlab/empowering-sign-language
Tip revision: aff4c3b3561254d2f7a7be3fb4631b0f4a3d179d authored by Rafael Vieira on 13 September 2024, 13:32:42 UTC
Update README.md
Update README.md
Tip revision: aff4c3b
train2.py
# -*- coding: utf-8 -*-
#for some reason this import has to come first, otherwise gives segfault
from transformers import BertTokenizer, BertModel
import datetime
import argparse
import uuid
import torch
import random
import numpy as np
import pickle
import os
import cv2
import copy
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from utils.util import Utils
from torchtext import data
from torchtext import datasets
from torch.utils.data import Dataset, DataLoader
from models.decoder_stgcn import Decoder
from models.sent_transformers import SentiTransformerEncoder
from data.dataset import SignProdDataset
from torch.utils.data import DataLoader
from data.dataset_sn import CustomImageDataset
from torch import nn
import torch.nn.functional as fnn
from torch.autograd import Variable
from torch.optim import SGD
from torchvision.datasets import LSUN
from torchvision import transforms
from torch.utils.data import Dataset
from torchvision.utils import make_grid
def read_pickle(file_fp):
with open(file_fp, "rb") as handler:
return pickle.load(handler)
def project_l2_ball_torch(zt):
unit_tensor = torch.Tensor([1])
return zt/torch.maximum(torch.sqrt(torch.sum(zt**2, axis = 1))[:, None], unit_tensor)
class Net(nn.Module):
def __init__(
self,
in_channels,
out_channels,
depth=1,
device = None
):
super(Net, self).__init__()
self.model = nn.Sequential(
torch.nn.Linear(in_channels, out_channels),
torch.nn.Linear(out_channels, 2*out_channels),
torch.nn.Tanh(),
torch.nn.Linear(2*out_channels, 2*out_channels),
torch.nn.Tanh(),
torch.nn.Linear(2*out_channels, out_channels),
torch.nn.Tanh()
)
def forward(self, sent_feature, sem_feature):
x = torch.cat([sent_feature, sem_feature], dim = 1)
x = self.model(x)
return x
def validate(net, val_dataloader, loss_f, device):
net.eval()
epoch_loss = list()
for sent_embedding, sem_embedding, z, zs in val_dataloader:
embedding = embedding.permute(0, 2, 1).to(device)
z = z.to(device)
zs = zs.to(device)
output = net(embedding)
loss = loss_f(output, z + zs, torch.Tensor([1]).to(device))
epoch_loss.append(loss.item())
epoch_mean_loss = sum(epoch_loss)/len(epoch_loss)
print("Validation Epoch Loss: {}".format(epoch_mean_loss))
def save_ckpt(model, out_fp):
torch.save(model.state_dict(), out_fp)
def main(args):
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
device = torch.device('cuda:0')
Z = read_pickle(args.zs_ckpt)
Zsent = read_pickle(args.zsent_ckpt)
training_dataset = CustomImageDataset(args.dataset_root, Z, Zsent, train = True)
validation_dataset = CustomImageDataset(args.dataset_root, Z, Zsent, train = False)
train_dataloader = DataLoader(training_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(validation_dataset, batch_size=32, shuffle=False)
net = Net(768*2, 768*8).to(device)
net.train()
loss_f = torch.nn.MSELoss()
optimizer_g = optim.Adam([
{'params': net.parameters(), 'lr': args.learning_rate, 'betas' : (0.5, 0.999)}
])
scheduler_g = StepLR(optimizer_g, step_size = 1000, gamma = 0.5)
step = 0
for epoch in range(0, 100):
epoch_loss = list()
for sent_embedding, sem_embedding, z, zs in train_dataloader:
z = z.to(device)
zs = zs.to(device)
sent_embedding = sent_embedding.to(device)
sem_embedding = sem_embedding.to(device)
output = net(sent_embedding, sem_embedding).reshape(-1, 768, 8)
loss = loss_f(output, z + zs)
epoch_loss.append(loss.item())
step += 1
if step % 3000 == 0:
validate(net, val_dataloader, loss_f, device)
net.train()
loss.backward()
optimizer_g.step()
scheduler_g.step()
epoch_mean_loss = sum(epoch_loss)/len(epoch_loss)
print("Train Epoch Loss: {}".format(epoch_mean_loss))
save_ckpt(net, "/srv/storage/datasets/rafaelvieira/text2expression/proj.pth")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--learning_rate', '-lr', type = float, default = 0.001)
parser.add_argument('--device', '-dev', type = int, default = 0)
parser.add_argument('--batch_size', '-bs', type = int, default = 42)
parser.add_argument('--epochs', '-e', type = int, default = 200000)
parser.add_argument('--dataset_root', '-d', type = str, default = "/srv/storage/datasets/rafaelvieira/slp_dataset_f68_full_ps_new_arch_sample_wz_final_grammar_wsem/train")
parser.add_argument('--validation_root', '-dv', type = str, default = "/srv/storage/datasets/rafaelvieira/slp_dataset_f68_full_ps_new_arch_sample_wz_final_grammar_wsem/test")
parser.add_argument('--zs_ckpt', '-zckpt', type = str, default = "/srv/storage/datasets/rafaelvieira/text2expression/should_be_good/Zs.pkl")
parser.add_argument('--zsent_ckpt', '-zsckpt', type = str, default = "/srv/storage/datasets/rafaelvieira/text2expression/should_be_good/Zsent.pkl")
args = parser.parse_args()
main(args)