Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd
  • Code
  • Branches (1)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • bbb89f8
  • /
  • Figure 6 -- Tokens Task Data Analysis
  • /
  • Figure_6_Generate.m
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:03c53c55718c576dc8362893c079cc6701bbf3ef
directory badge Iframe embedding
swh:1:dir:d615f04e1fe23058870cce8c51d6ba6cdac3dbd8
revision badge
swh:1:rev:2878a3d9f5a3b9b89a0084a897bef3414e9de4a2
snapshot badge
swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2878a3d9f5a3b9b89a0084a897bef3414e9de4a2 authored by nwbarendregt on 03 May 2022, 15:08:29 UTC
Add files via upload
Tip revision: 2878a3d
Figure_6_Generate.m
% Figure_6_Generate.m
% Script used to generate Figure 6 Barendregt et al., 2022.

clear

% Load MCMC and subject data:
load('trials.mat'); subs = 20; speeds = 2;
load('model_fit_NB.mat');
load('model_fit_Const.mat');
load('model_fit_UGM.mat');

% Define parameters for simulating models:
Nt = 15; R_i = -1; tol = 1e-5;

% Perform model selection using AICc and RMSE (Fig. 6A,D):
for speed_ind = 1:speeds
    model_class = zeros(3,2);
    NB_err = NaN(subs,1); Const_err = NaN(subs,1); UGM_err = NaN(subs,1);
    for sub_ind = 1:subs

        % Compare model AICc:
        model_AICc = [model_fit_NB(sub_ind,speed_ind).AICc model_fit_Const(sub_ind,speed_ind).AICc ...
            model_fit_UGM(sub_ind,speed_ind).AICc];
        [~,I] = min(model_AICc);
        model_class(I,1) = model_class(I,1)+1;
        
        % Load and format stimulus data:
        Sub_ID = model_fit_NB(sub_ind,speed_ind).idSubject;
        speed = model_fit_NB(sub_ind,speed_ind).speed; t_d = speed/1000;
        Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
        Sub_stim = trials.sTokenDirs((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
        stim = NaN(length(Sub_stim),Nt);
        for i = 1:length(Sub_stim)
            stim(i,:) = str2num(strtrim(regexprep(Sub_stim{i},'.{1}','$0 ')));
            stim(i,:) = 2*(stim(i,:)-1)-1;
        end
        
        % Compute average RMSE for NB model:
        Fit_response = NaN(50,length(Sub_T));
        MLE_NB = model_fit_NB(sub_ind,speed_ind).MLE;
        thresh_g = tok_Bellmans_g(Nt,t_d,MLE_NB(1),R_i,@(t) MLE_NB(2),tol);
        for i = 1:50
            for j = 1:length(Sub_T)
                T = tok_sim_norm(Nt,thresh_g,MLE_NB(3),stim(j,:));
                Fit_response(i,j) = round(MLE_NB(4)*randn+T);
                while (Fit_response(i,j) > Nt) || (Fit_response(i,j) < 0)
                    Fit_response(i,j) = round(MLE_NB(4)*randn+T);
                end
            end
        end
        Fit_response = mean(Fit_response,1);
        NB_err(sub_ind) = sqrt(sum((Fit_response-Sub_T).^2)/length(Sub_T));

        % Compute average RMSE for Const model:
        Fit_response = NaN(50,length(Sub_T));
        MLE_Const = model_fit_Const(sub_ind,speed_ind).MLE;
        thresh_g = MLE_Const(1)*ones(1,Nt+1);
        for i = 1:50
            for j = 1:length(Sub_T)
                T = tok_sim_norm(Nt,thresh_g,MLE_Const(2),stim(j,:));
                Fit_response(i,j) = round(MLE_Const(3)*randn+T);
                while (Fit_response(i,j) > Nt) || (Fit_response(i,j) < 0)
                    Fit_response(i,j) = round(MLE_Const(3)*randn+T);
                end
            end
        end
        Fit_response = mean(Fit_response,1);
        Const_err(sub_ind) = sqrt(sum((Fit_response-Sub_T).^2)/length(Sub_T));
        
        % Compute average RMSE for UGM:
        Fit_response = NaN(50,length(Sub_T));
        MLE_UGM = model_fit_UGM(sub_ind,speed_ind).MLE;
        for i = 1:50
            for j = 1:length(Sub_T)
                T = tok_sim_UGM(Nt,MLE_UGM(1),MLE_UGM(2),MLE_UGM(3),MLE_UGM(4),stim(j,:));
                Fit_response(i,j) = round(MLE_UGM(5)*randn+T);
                while (Fit_response(i,j) > Nt) || (Fit_response(i,j) < 0)
                    Fit_response(i,j) = round(MLE_UGM(5)*randn+T);
                end
            end
        end
        Fit_response = mean(Fit_response,1);
        UGM_err(sub_ind) = sqrt(sum((Fit_response-Sub_T).^2)/length(Sub_T));
        
        % Compare model average RMSE:
        model_err = [NB_err(sub_ind) Const_err(sub_ind) UGM_err(sub_ind)];
        [~,I] = min(model_err);
        model_class(I,2) = model_class(I,2)+1;
    end

    % Plot model selection results:
    figure
    bar(model_class')
end

% Compare subject mean RT to predicted RT from models (Fig. 6B,E):
for speed_ind = 1:speeds
    Sub_RT = NaN(subs,1); NB_RT = NaN(subs,1); Const_RT = NaN(subs,1); UGM_RT = NaN(subs,1);
    model_class = zeros(3,subs);
    for sub_ind = 1:subs
        
        % Calculate subject mean RT:
        Sub_ID = model_fit_NB(sub_ind,speed_ind).idSubject;
        speed = model_fit_NB(sub_ind,speed_ind).speed; t_d = speed/1000;
        Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
        Sub_RT(sub_ind) = mean(Sub_T);
        
        % Calculate model mean RT:
        NB_RT(sub_ind) = sum((0:Nt).*model_fit_NB(sub_ind,speed_ind).Fit);
        Const_RT(sub_ind) = sum((0:Nt).*model_fit_Const(sub_ind,speed_ind).Fit);
        UGM_RT(sub_ind) = sum((0:Nt).*model_fit_UGM(sub_ind,speed_ind).Fit);
        
        % Sort predictions by whether or not model was also selected using
        % AICc:
        model_AICc = [model_fit_NB(sub_ind,speed_ind).AICc model_fit_Const(sub_ind,speed_ind).AICc ...
            model_fit_UGM(sub_ind,speed_ind).AICc];
        [~,I] = min(model_AICc);
        model_class(I,sub_ind) = 1;
    end

    % Compute variance in models preditions from subject data:
    NB_RT_var = var(NB_RT-Sub_RT);
    Const_RT_var = var(Const_RT-Sub_RT);
    UGM_RT_var = var(UGM_RT-Sub_RT);
    
    % Plot mean RT results:
    figure
    plot(0:Nt,0:Nt,'k--','linewidth',5)
    hold on
    scatter(Sub_RT(model_class(1,:) == 0),NB_RT(model_class(1,:) == 0),...
        1500,'filled','MarkerEdgeColor','k','MarkerFaceColor','#1b9e77','MarkerFaceAlpha',0.25,'MarkerEdgeAlpha',0.25)
    scatter(Sub_RT(model_class(2,:) == 0),Const_RT(model_class(2,:) == 0), ...
        1500,'filled','MarkerEdgeColor','k','MarkerFaceColor','#d95f02','MarkerFaceAlpha',0.25,'MarkerEdgeAlpha',0.25)
    scatter(Sub_RT(model_class(3,:) == 0),UGM_RT(model_class(3,:) == 0), ...
        1500,'filled','MarkerEdgeColor','k','MarkerFaceColor','#7570b3','MarkerFaceAlpha',0.25,'MarkerEdgeAlpha',0.25)
    scatter(Sub_RT(model_class(1,:) == 1),NB_RT(model_class(1,:) == 1),...
        1500,'filled','MarkerEdgeColor','k','MarkerFaceColor','#1b9e77')
    scatter(Sub_RT(model_class(2,:) == 1),Const_RT(model_class(2,:) == 1),...
        1500,'filled','MarkerEdgeColor','k','MarkerFaceColor','#d95f02')
    scatter(Sub_RT(model_class(3,:) == 1),UGM_RT(model_class(3,:) == 1), ...
        1500,'filled','MarkerEdgeColor','k','MarkerFaceColor','#7570b3')
    xlabel('Subject Mean RT')
    ylabel('Model Mean RT')

    % Display prediction variances:
    disp([NB_RT_var Const_RT_var UGM_RT_var])
end

% Classify motif of fitted normative model for each subject (Fig. 6C,F):
for speed_ind = 1:speeds
    c_MLE = NaN(subs,1); R_c_MLE = NaN(subs,1);
    type = NaN(1,subs);
    model_class = zeros(3,subs);
    for sub_ind = 1:subs

        % Load MLE parameters from fitted NB model:
        c_MLE(sub_ind) = model_fit_NB(sub_ind,speed_ind).MLE(2);
        R_c_MLE(sub_ind) = model_fit_NB(sub_ind,speed_ind).MLE(1);
        
        % Construct fitted NB threshold:
        speed = model_fit_NB(sub_ind,speed_ind).speed; t_d = speed/1000;
        thresh_TL = tok_Bellmans_TL(Nt,t_d,R_c_MLE(sub_ind),R_i,@(t) c_MLE(sub_ind),tol);

        % Classify threshold motif:
        if sum(thresh_TL==0)==length(thresh_TL)
            type(sub_ind) = 1; % Motif i
        elseif sum(diff(thresh_TL)<=0)==(length(thresh_TL)-1)
            type(sub_ind) = 2; % Motif ii
        elseif sum(diff(find(sign(diff(thresh_TL))==1))==1)==0
            type(sub_ind) = 3; % Motif iii
        else
            type(sub_ind) = 4; % Motif iv
        end

        % Sort classification by whether or not NB model was selected using
        % AICc:
        model_AICc = [model_fit_NB(sub_ind,speed_ind).AICc model_fit_Const(sub_ind,speed_ind).AICc ...
            model_fit_UGM(sub_ind,speed_ind).AICc];
        [~,I] = min(model_AICc);
        model_class(I,sub_ind) = 1;
    end

    % Plot MLEs in parameter space, color-coded by threshold motif:
    figure
    scatter(c_MLE((type == 1) & (model_class(1,:) == 1)),R_c_MLE((type == 1) & (model_class(1,:) == 1)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#8dd3c7')
    hold on
    scatter(c_MLE((type == 1) & (model_class(1,:) == 0)),R_c_MLE((type == 1) & (model_class(1,:) == 1)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#8dd3c7','MarkerFaceAlpha',0.25,'MarkerEdgeAlpha',0.25)
    scatter(c_MLE((type == 2) & (model_class(1,:) == 1)),R_c_MLE((type == 2) & (model_class(1,:) == 1)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#fdb462')
    scatter(c_MLE((type == 2) & (model_class(1,:) == 0)),R_c_MLE((type == 2) & (model_class(1,:) == 0)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#fdb462','MarkerFaceAlpha',0.25,'MarkerEdgeAlpha',0.25)
    scatter(c_MLE((type == 3) & (model_class(1,:) == 1)),R_c_MLE((type == 3) & (model_class(1,:) == 1)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#bebada')
    scatter(c_MLE((type == 3) & (model_class(1,:) == 0)),R_c_MLE((type == 3) & (model_class(1,:) == 0)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#bebada','MarkerFaceAlpha',0.25,'MarkerEdgeAlpha',0.25)
    scatter(c_MLE((type == 4) & (model_class(1,:) == 1)),R_c_MLE((type == 4) & (model_class(1,:) == 1)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#fb8072')
    scatter(c_MLE((type == 4) & (model_class(1,:) == 0)),R_c_MLE((type == 4) & (model_class(1,:) == 0)),1500,'filled',...
        'MarkerEdgeColor','k','MarkerFaceColor','#fb8072')
end

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API