############################################################### # # # Author: Toni Giorgino # # Laboratory for Biomedical Informatics # # University of Pavia - Italy # # www.labmedinfo.org # # # # $Id: dtw.R 10 2007-12-03 19:17:59Z tonig $ # # ############################################################### ## For pre-defined step patterns see below. ############################# ## Methods for accessing and creating step.patterns stepPattern <- function(v) { if(!is.vector(v)) { stop("stepPattern creation only supported from vectors"); } obj<-matrix(v,ncol=4,byrow=TRUE); class(obj)<-"stepPattern"; return(obj); } is.stepPattern <- function(x) { return(inherits(x,"stepPattern")); } ## pretty-print the matrix meaning, ## so it will not be as write-only as now print.stepPattern <-function(x,...) { step.pattern<-x; # for clarity np<-max(step.pattern[,1]); #no. of patterns head<-"g[i,j] = min(\n"; body<-""; ## cycle over available step patterns for(p in 1:np) { steps<-.extractpattern(step.pattern,p); ns<-dim(steps)[1]; ## restore row order steps<-steps[ns:1,]; ## cycle over steps s in the current pattern p for(s in 1:ns) { di<-steps[s,1]; # delta in query dj<-steps[s,2]; # delta in templ cc<-steps[s,3]; # step cost multiplier ## make pretty-printable negative increments dis<-ifelse(di==0,"",-di); # 4 -> -4; 0 -> . djs<-ifelse(dj==0,"",-dj); # 0 maps to empty string ## cell origin, as coordinate pair dijs<-sprintf("i%2s,j%2s",dis,djs); if(cc==-1) { # g gs<-sprintf(" g[%s]",dijs); body<-paste(body,gs); } else { ## prettyprint step cost multiplier in ccs: 1 -> .; 2 -> 2 * ccs<-ifelse(cc==1,"",sprintf(" %d *",cc)); ds<-sprintf("+%s d[%s]",ccs,dijs); body<-paste(body,ds); } } body<-paste(body,",\n",s=""); } tail<-")\n\n"; rv<-paste(head,body,tail); cat("Step pattern recursion:\n"); cat(rv); } ## TODO: sanity check on the step pattern definition .checkpattern <- function(sp) { ## must have 4 x n elements ## all integers ## first column in ascending order from 1, no missing steps ## 2nd, 3rd row non-negative ## 4th: first time for each step is -1 } ## Extract rows belonging to pattern no. sn ## with first element stripped ## in reverse order .extractpattern <- function(sp,sn) { sbs<-sp[,1]==sn; # pick only rows beginning by sn spl<-sp[sbs,-1]; # of those: take only column Di, Dj, cost # (drop pattern no. column) ## make sure it stays a matrix spl <- matrix(spl,ncol=3); nr<-dim(spl)[1]; # how many are left spl<-spl[nr:1,]; # invert row order ## make sure it stays a matrix spl <- matrix(spl,ncol=3); return(spl); } ################################################## ################################################## ## ## Various step patterns, defined as internal variables ## ## Some knowledge of DP is required to modify this file. ## Step patterns taken from Sakoe, cited in documentation ## First column: enumerates step patterns. ## Second step in query index ## Third step in template index ## Fourth weight if positive, or -1 if starting point ## normalization: no symmetric1 <- stepPattern(c( 1,0,1,-1, 1,0,0,1, 2,1,1,-1, 2,0,0,1, 3,1,0,-1, 3,0,0,1 )); ## normalization: N+M symmetric2 <- stepPattern(c( 1,0,1,-1, 1,0,0,1, 2,1,1,-1, 2,0,0,2, 3,1,0,-1, 3,0,0,1 )); ## this one works ## normalization: N asymmetric <- stepPattern(c( 1,1,0,-1, 1,0,0,1, 2,1,1,-1, 2,0,0,1, 3,1,2,-1, 3,0,0,1 )); ## normalization: N asymmetricItakura <- stepPattern(c( 1, 1, 2, -1, 1, 0, 0, 1, 2, 1, 1, -1, 2, 0, 0, 1, 3, 2, 1, -1, 3, 1, 0, 1, 3, 0, 0, 1, 4, 2, 2, -1, 4, 1, 0, 1, 4, 0, 0, 1 )); ################################ ## according to sakoe page 47 ## but I'm not very positive about it .asymmetricSakoe <- stepPattern(c( 1,0,1,-1, 2,1,1,-1, 2,0,0,1, 3,1,0,-1, 3,0,0,1 )); ############################# ## Slope-limited versions ## ## Taken from Table I, page 47 of "Dynamic programming algorithm ## optimization for spoken word recognition," Acoustics, Speech, and ## Signal Processing, vol.26, no.1, pp. 43-49, Feb 1978 URL: ## http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055 ## Implementation of Sakoe's P=1, Symmetric algorithm symmetricP1 <- stepPattern(c( 1,1,2,-1, # First branch: g(i-1,j-2)+ 1,0,1,2, # + 2d(i ,j-1) 1,0,0,1, # + d(i ,j) 2,1,1,-1, # Second branch: g(i-1,j-1)+ 2,0,0,2, # +2d(i, j) 3,2,1,-1, # Third branch: g(i-2,j-1)+ 3,1,0,2, # + 2d(i-1,j) 3,0,0,1 # + d( i,j) ));