Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 809b8b8
  • /
  • tran.cylspher.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:04ef773538d78ec63520a8b63b2252aa05ba14f6
directory badge Iframe embedding
swh:1:dir:809b8b8ba6376b1f9a293a09ccc47a6c531543b9
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
tran.cylspher.R
##==============================================================================
## Diffusive transport in cylindrical coordinates (r, theta, z)
##==============================================================================

tran.cylindrical <- function(C, C.r.up = NULL, C.r.down = NULL, 
                             C.theta.up = NULL, C.theta.down = NULL, 
                             C.z.up = NULL, C.z.down = NULL, 
                             flux.r.up = NULL, flux.r.down = NULL, 
                             flux.theta.up = NULL, flux.theta.down = NULL,          
                             flux.z.up = NULL, flux.z.down = NULL, 
                             cyclicBnd = NULL,
                             D.r = NULL, D.theta = D.r, D.z = D.r, 
                             r = NULL,  theta = NULL, z = NULL) 
{
# ------------------------------------------------------------------------------
# Initialisation
# ------------------------------------------------------------------------------

  dimens <- dim(C)
  if (length(dimens) != 3)
    stop("'C' should an array of dimensionality 3")
  
  Nr     <- dimens[1]
  Ntheta <- dimens[2]
  Nz     <- dimens[3]

  if (length(r) != Nr+1)
    stop("Length of 'r' should equal first dimension of 'C' + 1")
  if (length(theta) != Ntheta+1)
    stop("Length of 'theta' should equal second dimension of 'C' + 1")
  if (length(z) != Nz+1)
    stop("Length of 'z' should equal third dimension of 'C' + 1")

  if (max(theta) > 2 * pi)                                                               
    stop("theta should be < 2pi")                                                      
  if (min(theta) < 0)                                                                    
    stop("theta should be > 0 ")                                                       

# boundary conditions default = zero-gradient
  Bc.r.Up       <- 3
  Bc.r.Down     <- 3
  Bc.theta.Up   <- 3
  Bc.theta.Down <- 3
  Bc.z.Up       <- 3
  Bc.z.Down     <- 3

# boundaries in r-direction
  if (! is.null(C.r.up))
    Bc.r.Up <- 2
  else
    C.r.up <- 0.  

  if (! is.null(flux.r.up))
    Bc.r.Up <- 1
  else
    flux.r.up <- 0.  
    
  if (! is.null(C.r.down))
    Bc.r.Down <- 2
  else
    C.r.down <- 0.  

  if (! is.null(flux.r.down))
    Bc.r.Down <- 1
  else            
    flux.r.down <- 0.

  if (1 %in% cyclicBnd) {
    Bc.r.Up   <- 5
    Bc.r.Down <- 5
  }  

# boundaries in theta-direction
  if (! is.null(C.theta.up))
    Bc.theta.Up <- 2
  else
    C.theta.up <- 0.  

  if (! is.null(flux.theta.up))
    Bc.theta.Up <- 1
  else
    flux.theta.up <- 0.  
    
  if (! is.null(C.theta.down))
    Bc.theta.Down <- 2
  else
    C.theta.down <- 0.  

  if (! is.null(flux.theta.down))
    Bc.theta.Down <- 1
  else            
    flux.theta.down <- 0.

  if (2 %in% cyclicBnd) {
    Bc.theta.Up   <- 5
    Bc.theta.Down <- 5
  }  

# boundaries in z-direction
  if (! is.null(C.z.up))
    Bc.z.Up <- 2
  else
    C.z.up <- 0.  

  if (! is.null(flux.z.up))
    Bc.z.Up <- 1
  else
    flux.z.up <- 0.  
    
  if (! is.null(C.z.down))
    Bc.z.Down <- 2
  else
    C.z.down <- 0.  

  if (! is.null(flux.z.down))
    Bc.z.Down <- 1
  else            
    flux.z.down <- 0.

  if (3 %in% cyclicBnd) {
    Bc.phi.Up   <- 5
    Bc.phi.Down <- 5
  }  

# Diffusion coefficients
  D.r <- rep(D.r, length.out=Nr+1)
  D.theta <- rep(D.theta, length.out=Ntheta+1)
  D.z <- rep(D.z, length.out=Nz+1)

  if (length(C.r.up) + length(flux.r.up) + 
      length(C.r.down) + length(flux.r.down) +
      length(C.theta.up) + length(flux.theta.up)+
      length(C.theta.down) + length(flux.theta.down)+
      length(C.z.up) + length(flux.z.up) + 
      length(C.z.down)+length(flux.z.down)!=12)
   stop("length of all 'boundary conditions' should be 1") 


    tr <- .Fortran("diffcyl", as.integer(Nr), as.integer(Ntheta), 
      as.integer(Nz), as.double(C),  
      as.double(C.r.up), as.double(C.r.down),  
      as.double(C.theta.up), as.double(C.theta.down),
      as.double(C.z.up), as.double(C.z.down),
      as.double(flux.r.up),  as.double(flux.r.down), 
      as.double(flux.theta.up),  as.double(flux.theta.down), 
      as.double(flux.z.up),  as.double(flux.z.down), 
      as.integer(Bc.r.Up), as.integer(Bc.r.Down),  
      as.integer(Bc.theta.Up), as.integer(Bc.theta.Down),  
      as.integer(Bc.z.Up), as.integer(Bc.z.Down),  
      as.double(D.r), as.double(D.theta), as.double(D.z), 
      as.double(r), as.double(theta), as.double(z),
      Fluxrup= numeric(Ntheta*Nz),Fluxrdown= numeric(Ntheta*Nz),
      Fluxthetaup= numeric(Nr*Nz),Fluxthetadown= numeric(Nr*Nz),
      FluxZup= numeric(Nr*Ntheta),FluxZdown= numeric(Nr*Ntheta),
      dC = numeric(Nr*Ntheta*Nz))  

  list(dC = array(dim=c(Nr, Ntheta, Nz), tr$dC),
       flux.r.up       = matrix(nrow=Ntheta, ncol = Nz, tr$Fluxrup),
       flux.r.down     = matrix(nrow=Ntheta, ncol = Nz, tr$Fluxrdown),
       flux.theta.up   = matrix(nrow=Nr, ncol = Nz, tr$Fluxthetaup),
       flux.theta.down = matrix(nrow=Nr, ncol = Nz, tr$Fluxthetadown),
       flux.z.up       = matrix(nrow=Nr, ncol = Ntheta, tr$FluxZup),
       flux.z.down     = matrix(nrow=Nr, ncol = Ntheta, tr$FluxZdown)
       )
}   


##==============================================================================
## Diffusive transport in spherical coordinates (r, theta, phi)
##==============================================================================

tran.spherical <- function(C, C.r.up = NULL, C.r.down = NULL, 
                             C.theta.up = NULL, C.theta.down = NULL, 
                             C.phi.up = NULL, C.phi.down = NULL, 
                             flux.r.up = NULL, flux.r.down = NULL, 
                             flux.theta.up = NULL, flux.theta.down = NULL,          
                             flux.phi.up = NULL, flux.phi.down = NULL, 
                             cyclicBnd = NULL,
                             D.r = NULL, D.theta = D.r, D.phi = D.r, 
                             r = NULL,  theta = NULL, phi = NULL) 
{
# ------------------------------------------------------------------------------
# Initialisation
# ------------------------------------------------------------------------------

  dimens <- dim(C)
  if (length(dimens) != 3)
    stop("'C' should an array of dimensionality 3")
  
  Nr     <- dimens[1]
  Ntheta <- dimens[2]
  Nphi     <- dimens[3]

  if (length(r) != Nr+1)
    stop("Length of 'r' should equal first dimension of 'C' + 1")
  if (length(theta) != Ntheta+1)
    stop("Length of 'theta' should equal second dimension of 'C' + 1")
  if (length(phi) != Nphi+1)
    stop("Length of 'phi' should equal third dimension of 'C' + 1")

  if (max(theta) > 2 * pi)                                                               
    stop("theta should be <= 2*pi")                                                      
  if (min(theta) < 0)                                                                    
    stop("theta should be >= 0 ")                                                       

  if (max(phi) > 2 * pi)                                                               
    stop("phi should be <= 2*pi")                                                      
  if (min(phi) < 0)                                                                    
    stop("phi should be >= 0 ")                                                       

# boundary conditions default = zero-gradient
  Bc.r.Up       <- 3
  Bc.r.Down     <- 3
  Bc.theta.Up   <- 3
  Bc.theta.Down <- 3
  Bc.phi.Up       <- 3
  Bc.phi.Down     <- 3

# boundaries in r-direction
  if (! is.null(C.r.up))
    Bc.r.Up <- 2
  else
    C.r.up <- 0.  

  if (! is.null(flux.r.up))
    Bc.r.Up <- 1
  else
    flux.r.up <- 0.  
    
  if (! is.null(C.r.down))
    Bc.r.Down <- 2
  else
    C.r.down <- 0.  

  if (! is.null(flux.r.down))
    Bc.r.Down <- 1
  else            
    flux.r.down <- 0.

  if (1 %in% cyclicBnd) {
    Bc.r.Up   <- 5
    Bc.r.Down <- 5
  }  

# boundaries in theta-direction
  if (! is.null(C.theta.up))
    Bc.theta.Up <- 2
  else
    C.theta.up <- 0.  

  if (! is.null(flux.theta.up))
    Bc.theta.Up <- 1
  else
    flux.theta.up <- 0.  
    
  if (! is.null(C.theta.down))
    Bc.theta.Down <- 2
  else
    C.theta.down <- 0.  

  if (! is.null(flux.theta.down))
    Bc.theta.Down <- 1
  else            
    flux.theta.down <- 0.

  if (2 %in% cyclicBnd) {
    Bc.theta.Up   <- 5
    Bc.theta.Down <- 5
  }  

# boundaries in phi-direction
  if (! is.null(C.phi.up))
    Bc.phi.Up <- 2
  else
    C.phi.up <- 0.  

  if (! is.null(flux.phi.up))
    Bc.phi.Up <- 1
  else
    flux.phi.up <- 0.  
    
  if (! is.null(C.phi.down))
    Bc.phi.Down <- 2
  else
    C.phi.down <- 0.  

  if (! is.null(flux.phi.down))
    Bc.phi.Down <- 1
  else            
    flux.phi.down <- 0.

  if (3 %in% cyclicBnd) {
    Bc.phi.Up   <- 5
    Bc.phi.Down <- 5
  }  

# Diffusion coefficients
  D.r <- rep(D.r, length.out=Nr+1)
  D.theta <- rep(D.theta, length.out=Ntheta+1)
  D.phi <- rep(D.phi, length.out=Nphi+1)

  if (length(C.r.up) + length(flux.r.up) + 
      length(C.r.down) + length(flux.r.down) +
      length(C.theta.up) + length(flux.theta.up)+
      length(C.theta.down) + length(flux.theta.down)+
      length(C.phi.up) + length(flux.phi.up) + 
      length(C.phi.down)+length(flux.phi.down)!=12)
   stop("length of all 'boundary conditions' should be 1") 


    tr <- .Fortran("diffspher", as.integer(Nr), as.integer(Ntheta), 
      as.integer(Nphi), as.double(C),  
      as.double(C.r.up), as.double(C.r.down),  
      as.double(C.theta.up), as.double(C.theta.down),
      as.double(C.phi.up), as.double(C.phi.down),
      as.double(flux.r.up),  as.double(flux.r.down), 
      as.double(flux.theta.up),  as.double(flux.theta.down), 
      as.double(flux.phi.up),  as.double(flux.phi.down), 
      as.integer(Bc.r.Up), as.integer(Bc.r.Down),  
      as.integer(Bc.theta.Up), as.integer(Bc.theta.Down),  
      as.integer(Bc.phi.Up), as.integer(Bc.phi.Down),  
      as.double(D.r), as.double(D.theta), as.double(D.phi), 
      as.double(r), as.double(theta), as.double(phi),
      Fluxrup= numeric(Ntheta*Nphi),Fluxrdown= numeric(Ntheta*Nphi),
      Fluxthetaup= numeric(Nr*Nphi),Fluxthetadown= numeric(Nr*Nphi),
      Fluxphiup= numeric(Nr*Ntheta),Fluxphidown= numeric(Nr*Ntheta),
      dC = numeric(Nr*Ntheta*Nphi))  

  list(dC = array(dim=c(Nr, Ntheta, Nphi), tr$dC),
       flux.r.up       = matrix(nrow=Ntheta, ncol = Nphi, tr$Fluxrup),
       flux.r.down     = matrix(nrow=Ntheta, ncol = Nphi, tr$Fluxrdown),
       flux.theta.up   = matrix(nrow=Nr, ncol = Nphi, tr$Fluxthetaup),
       flux.theta.down = matrix(nrow=Nr, ncol = Nphi, tr$Fluxthetadown),
       flux.phi.up     = matrix(nrow=Nr, ncol = Ntheta, tr$Fluxphiup),
       flux.phi.down   = matrix(nrow=Nr, ncol = Ntheta, tr$Fluxphidown)
       )
}   

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top