Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:2c68a6c5a8af2f06ac2c0225927f25b54fd1f9d0
  • Code
  • Branches (24)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1.0
    • refs/tags/0.10.0
    • refs/tags/0.10.5
    • refs/tags/0.11.0
    • refs/tags/0.11.5
    • refs/tags/0.12.1
    • refs/tags/0.13.0
    • refs/tags/0.2.0
    • refs/tags/0.2.2
    • refs/tags/0.2.5
    • refs/tags/0.3.0
    • refs/tags/0.4.0
    • refs/tags/0.5.0
    • refs/tags/0.5.1
    • refs/tags/0.5.2
    • refs/tags/0.5.3
    • refs/tags/0.6.0
    • refs/tags/0.7.0
    • refs/tags/0.7.2
    • refs/tags/0.7.5
    • refs/tags/0.8.0
    • refs/tags/0.8.2
    • refs/tags/0.9.0
    No releases to show
  • 1f0a22c
  • /
  • inst
  • /
  • doc
  • /
  • bayes_factors.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:051e403d90858de9364492e0f50fef69b85f72ca
directory badge Iframe embedding
swh:1:dir:cfa272b2679423ca4a494b7b41d15be0683d72d7
revision badge
swh:1:rev:3da49db3cf0eea4d2c5eba241ddb5470cd7dd929
snapshot badge
swh:1:snp:2c68a6c5a8af2f06ac2c0225927f25b54fd1f9d0
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 3da49db3cf0eea4d2c5eba241ddb5470cd7dd929 authored by Dominique Makowski on 26 January 2021, 16:40:03 UTC
version 0.8.2
Tip revision: 3da49db
bayes_factors.R
## ----setup, include=FALSE-----------------------------------------------------
library(knitr)
options(knitr.kable.NA = '', digits = 2)
knitr::opts_chunk$set(echo = TRUE,
                      comment = ">",
                      message = FALSE,
                      warning = FALSE,
                      dpi = 150)

pkgs <- c("rstanarm", "BayesFactor", "emmeans", "logspline", "lme4", "ggplot2",
          "see", "insight", "emmeans", "knitr", "effectsize", "bayestestR")
if (!all(sapply(pkgs, require, quietly = TRUE, character.only = TRUE))) {
  knitr::opts_chunk$set(eval = FALSE)
}

set.seed(4)

if (require("ggplot2") && require("see")) {
  theme_set(theme_modern())
}

## ----deathsticks_fig, echo=FALSE, fig.cap="Bayesian analysis of the Students' (1908) Sleep data set.", fig.align='center', out.width="80%"----
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/deathsticks.jpg")

## ----sleep_boxplot, echo=FALSE------------------------------------------------
library(ggplot2)
ggplot(sleep, aes(x = group, y = extra, fill= group)) +
  geom_boxplot() +
  theme_classic()

## ----rstanarm_model, eval = FALSE---------------------------------------------
#  library(rstanarm)
#  
#  model <- stan_glm(extra ~ group, data = sleep,
#                    prior = normal(0, 3, autoscale = FALSE))

## ---- echo=FALSE--------------------------------------------------------------
model <- stan_glm(extra ~ group, data = sleep,
                  prior = normal(0, 3, autoscale = FALSE),
                  refresh = 0)

## ---- echo=FALSE--------------------------------------------------------------
null <- c(-1,1)
xrange <- c(-10,10)

x_vals <- seq(xrange[1], xrange[2], length.out = 400)
d_vals <- dnorm(x_vals, sd = 3)
in_null <- null[1] < x_vals & x_vals < null[2]
range_groups <- rep(0, length(x_vals))
range_groups[!in_null & x_vals < 0] <- -1
range_groups[!in_null & x_vals > 0] <- 1

ggplot(mapping = aes(x_vals, d_vals, fill = in_null, group = range_groups)) +
  geom_area(color = "black", size = 1) +
  scale_fill_flat(name = "", labels = c("Alternative", "Null")) + 
  labs(x = "Drug effect", y = "Density") + 
  coord_cartesian(ylim = c(0, 0.45)) +
  theme_modern() + 
  theme(legend.position = c(0.2, 0.8))

pnull <- diff(pnorm(null, sd = 2.5))
prior_odds <- (1 - pnull) / pnull

## ----rstanarm_fit, echo=FALSE-------------------------------------------------
library(bayestestR)
model_prior <- unupdate(model)
posterior <- insight::get_parameters(model)$group2
prior <- insight::get_parameters(model_prior)$group2

f_post <- logspline::logspline(posterior)

d_vals_post <- logspline::dlogspline(x_vals,f_post)

ggplot(mapping = aes(x_vals, d_vals_post, fill = in_null, group = range_groups)) +
  geom_area(color = "black", size = 1) +
  scale_fill_flat(name = "", labels = c("Alternative", "Null")) + 
  labs(x = "Drug effect", y = "Density") + 
  coord_cartesian(ylim = c(0, 0.45)) +
  theme_modern() + 
  theme(legend.position = c(0.2, 0.8))

My_first_BF <- bayesfactor_parameters(model, null = c(-1,1), prior = model_prior)

BF <- My_first_BF$BF[2]
post_odds <- prior_odds * BF

med_post <- point_estimate(posterior)$Median

## ---- eval=FALSE--------------------------------------------------------------
#  My_first_BF <- bayesfactor_parameters(model, null = c(-1, 1))
#  My_first_BF

## ---- echo=FALSE--------------------------------------------------------------
print(My_first_BF)

## -----------------------------------------------------------------------------
library(see)
plot(My_first_BF)

## -----------------------------------------------------------------------------
effectsize::interpret_bf(My_first_BF$BF[2], include_value = TRUE)

## ---- eval=FALSE--------------------------------------------------------------
#  My_second_BF <- bayesfactor_parameters(model, null = 0)
#  My_second_BF

## ---- echo=FALSE--------------------------------------------------------------
My_second_BF <- bayesfactor_parameters(
  data.frame(group2 = posterior),
  data.frame(group2 = prior),
  null = 0)

print(My_second_BF)

## -----------------------------------------------------------------------------
plot(My_second_BF)

## ----savagedickey_one_sided, eval=FALSE---------------------------------------
#  test_group2_right <- bayesfactor_parameters(model, direction = ">")
#  test_group2_right

## ----prior_n_post_plot_one_sided, echo=FALSE----------------------------------
test_group2_right <- bayesfactor_parameters(
  data.frame(group2 = posterior),
  data.frame(group2 = prior),
  null = 0,
  direction = ">"
)

BF <- test_group2_right$BF

print(test_group2_right)

## -----------------------------------------------------------------------------
plot(test_group2_right)

## ----inteval_div, eval=FALSE--------------------------------------------------
#  test_group2_dividing <- bayesfactor_parameters(model, null = c(-Inf, 0))
#  test_group2_dividing

## ----inteval_div2, echo=FALSE-------------------------------------------------
test_group2_dividing <- bayesfactor_parameters(
  data.frame(group2 = posterior),
  data.frame(group2 = prior),
  null = c(-Inf, 0)
)

print(test_group2_dividing)

## -----------------------------------------------------------------------------
plot(test_group2_dividing)

## ---- eval=FALSE--------------------------------------------------------------
#  my_first_si <- si(model, BF = 1)
#  my_first_si

## ---- echo=FALSE--------------------------------------------------------------
my_first_si <- si(data.frame(group2 = posterior),
                  data.frame(group2 = prior),
                  BF = 1)

print(my_first_si)

## -----------------------------------------------------------------------------
plot(my_first_si)

## ----brms_disp, eval=FALSE----------------------------------------------------
#  library(brms)
#  
#  m0 <- brm(Sepal.Length ~ 1, # intercept only model
#            data = iris, save_pars = save_pars(all = TRUE))
#  m1 <- brm(Sepal.Length ~ Petal.Length,
#            data = iris, save_pars = save_pars(all = TRUE))
#  m2 <- brm(Sepal.Length ~ Species,
#            data = iris, save_pars = save_pars(all = TRUE))
#  m3 <- brm(Sepal.Length ~ Species + Petal.Length,
#            data = iris, save_pars = save_pars(all = TRUE))
#  m4 <- brm(Sepal.Length ~ Species * Petal.Length,
#            data = iris, save_pars = save_pars(all = TRUE))

## ----brms_models_disp, eval=FALSE---------------------------------------------
#  library(bayestestR)
#  comparison <- bayesfactor_models(m1, m2, m3, m4, denominator = m0)
#  comparison

## ----brms_models_print, echo=FALSE--------------------------------------------
comparison <- structure(
  list(
    Model = c(
      "Petal.Length",
      "Species",
      "Species + Petal.Length",
      "Species * Petal.Length",
      "1"
    ),
    BF = c(3.44736e+44, 5.628679e+29, 7.121386e+55, 9.149948e+55, 1)
  ),
  class = c("bayesfactor_models", "see_bayesfactor_models", "data.frame"),
  row.names = c(NA, -5L),
  denominator = 5L,
  BF_method = "marginal likelihoods (bridgesampling)", unsupported_models = FALSE
)

print(comparison)

## ----update_models1-----------------------------------------------------------
update(comparison, reference = 3)

## ----update_models2-----------------------------------------------------------
update(comparison, reference = 2)

## -----------------------------------------------------------------------------
as.matrix(comparison)

## ----lme4_models, eval=FALSE--------------------------------------------------
#  library(lme4)
#  
#  m0 <- lmer(Sepal.Length ~ (1 | Species), data = iris)
#  m1 <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
#  m2 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris)
#  m3 <- lmer(Sepal.Length ~ Petal.Length + Petal.Width + (Petal.Length | Species), data = iris)
#  m4 <- lmer(Sepal.Length ~ Petal.Length * Petal.Width + (Petal.Length | Species), data = iris)
#  
#  bayesfactor_models(m1, m2, m3, m4, denominator = m0)

## ---- echo=FALSE--------------------------------------------------------------
structure(list(Model = c(
  "Petal.Length + (1 | Species)",
  "Petal.Length + (Petal.Length | Species)", 
  "Petal.Length + Petal.Width + (Petal.Length | Species)",
  "Petal.Length * Petal.Width + (Petal.Length | Species)", 
  "1 + (1 | Species)"),
  BF = c(8.24027869011648e+24, 4.7677519818206e+23, 
         1.52492156042604e+22, 5.93045520305254e+20, 1)),
  class = c("bayesfactor_models", "see_bayesfactor_models", "data.frame"),
  row.names = c(NA, -5L),
  denominator = 5L,
  BF_method = "BIC approximation", unsupported_models = FALSE)

## ---- eval=FALSE--------------------------------------------------------------
#  iris_model <- stan_glm(Sepal.Length ~ Species + Petal.Length,
#                         data = iris,
#                         prior = normal(0, c(2, 1.2, 1.2), autoscale = FALSE))

## ---- echo=FALSE--------------------------------------------------------------
iris_model <- stan_glm(Sepal.Length ~ Species + Petal.Length,
                       data = iris,
                       prior = normal(0, c(2, 1.2, 1.2), autoscale = FALSE),
                       refresh = 0)

## -----------------------------------------------------------------------------
botanist_hypotheses <- c(
  "Petal.Length > 0",
  "(Speciesversicolor > 0) & (Speciesvirginica > 0)"
)

## ---- eval=FALSE--------------------------------------------------------------
#  botanist_BFs <- bayesfactor_restricted(iris_model, hypothesis = botanist_hypotheses)
#  botanist_BFs

## ---- echo=FALSE--------------------------------------------------------------

model_prior <- unupdate(iris_model)

botanist_BFs <- bayesfactor_restricted(iris_model, prior = model_prior, 
                                       hypothesis = botanist_hypotheses)
print(botanist_BFs)

## ----plot_iris, echo=FALSE----------------------------------------------------
ggplot(iris, aes(Petal.Length, Sepal.Length, color = Species)) + 
  geom_point() + 
  scale_color_flat() + 
  theme(legend.position = c(0.2, 0.8))

## ----inclusion_brms-----------------------------------------------------------
bayesfactor_inclusion(comparison)

## ----inclusion_brms2----------------------------------------------------------
bayesfactor_inclusion(comparison, match_models = TRUE)

## ----JASP_all-----------------------------------------------------------------
library(BayesFactor)
data(ToothGrowth)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)

BF_ToothGrowth <- anovaBF(len ~ dose*supp, ToothGrowth, progress = FALSE)

bayesfactor_inclusion(BF_ToothGrowth)

## ----JASP_all_fig, echo=FALSE-------------------------------------------------
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/JASP1.PNG")

## ----JASP_matched-------------------------------------------------------------
bayesfactor_inclusion(BF_ToothGrowth, match_models = TRUE)

## ----JASP_matched_fig, echo=FALSE---------------------------------------------
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/JASP2.PNG")

## ----JASP_Nuisance------------------------------------------------------------
BF_ToothGrowth_against_dose <- BF_ToothGrowth[3:4]/BF_ToothGrowth[2] # OR: 
# update(bayesfactor_models(BF_ToothGrowth),
#        subset = c(4, 5),
#        reference = 3)
BF_ToothGrowth_against_dose


bayesfactor_inclusion(BF_ToothGrowth_against_dose)

## ----JASP_Nuisance_fig, echo=FALSE--------------------------------------------
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/JASP3.PNG")

## ---- eval=FALSE--------------------------------------------------------------
#  mod <- stan_glm(mpg ~ wt + am,
#                  data = mtcars,
#                  prior = normal(0, c(10,10), autoscale = FALSE),
#                  diagnostic_file = file.path(tempdir(), "df1.csv"))
#  
#  mod_carb <- stan_glm(mpg ~ wt + am + carb,
#                       data = mtcars,
#                       prior = normal(0, c(10,10,20), autoscale = FALSE),
#                       diagnostic_file = file.path(tempdir(), "df0.csv"))
#  
#  bayesfactor_models(mod_carb, denominator = mod)

## ---- echo=FALSE--------------------------------------------------------------
mod <- stan_glm(mpg ~ wt + am,            
                data = mtcars,
                prior = normal(0, c(10,10), autoscale = FALSE),
                diagnostic_file = file.path(tempdir(), "df1.csv"),
                refresh = 0)

mod_carb <- stan_glm(mpg ~ wt + am + carb,            
                     data = mtcars,
                     prior = normal(0, c(10,10,20), autoscale = FALSE),
                     diagnostic_file = file.path(tempdir(), "df0.csv"),
                     refresh = 0)

BF_carb <- bayesfactor_models(mod_carb, denominator = mod, verbose = FALSE)
BF <- BF_carb$BF[1]
print(BF_carb)


## -----------------------------------------------------------------------------
hdi(mod_carb, ci = .95)

## -----------------------------------------------------------------------------
BMA_draws <- weighted_posteriors(mod, mod_carb)

BMA_hdi <- hdi(BMA_draws, ci = .95)
BMA_hdi

plot(BMA_hdi)

## ---- echo=FALSE--------------------------------------------------------------
set.seed(1)

## -----------------------------------------------------------------------------
library(emmeans)

groups <- emmeans(model, ~ group)
group_diff <- pairs(groups)

(groups_all <- rbind(groups, group_diff))

# pass the original model via prior
bayesfactor_parameters(groups_all, prior = model)

## ---- echo=FALSE--------------------------------------------------------------
set.seed(1)

## ---- eval=FALSE--------------------------------------------------------------
#  library(modelbased)
#  
#  estimate_contrasts(model, test = "bf")

## ---- eval=FALSE--------------------------------------------------------------
#  df <- iris
#  contrasts(df$Species) <- contr.sum
#  
#  fit_sum <- stan_glm(Sepal.Length ~ Species, data = df,
#                      prior = normal(0, c(1, 1), autoscale = FALSE),
#                      prior_PD = TRUE, # sample priors
#                      family = gaussian())
#  
#  pairs_sum <- pairs(emmeans(fit_sum, ~ Species))
#  pairs_sum

## ----echo=FALSE, message=FALSE, warning=FALSE---------------------------------
df <- iris
contrasts(df$Species)[, ] <- contr.sum(3)

fit_sum <- stan_glm(Sepal.Length ~ Species, data = df,
                    prior = normal(0, c(1, 1), autoscale = FALSE),
                    prior_PD = TRUE, # sample priors
                    family = gaussian(),
                    refresh = 0)

pairs_sum <- pairs(emmeans(fit_sum, ~ Species))

em_pairs_samples <- as.data.frame(as.matrix(emmeans::as.mcmc.emmGrid(pairs_sum, names = FALSE)))

print(pairs_sum)

ggplot(stack(em_pairs_samples), aes(x = values, fill = ind)) + 
  geom_density(size = 1) + 
  facet_grid(ind ~ .) + 
  labs(x = "prior difference values") + 
  theme(legend.position = "none")

## ---- eval=FALSE--------------------------------------------------------------
#  contrasts(df$Species) <- contr.bayes

## ---- eval=FALSE--------------------------------------------------------------
#  options(contrasts = c('contr.bayes', 'contr.poly'))

## ---- eval=FALSE--------------------------------------------------------------
#  fit_bayes <- stan_glm(Sepal.Length ~ Species, data = df,
#                        prior = normal(0, c(1, 1), autoscale = FALSE),
#                        prior_PD = TRUE, # sample priors
#                        family = gaussian())
#  
#  pairs_bayes <- pairs(emmeans(fit_bayes, ~ Species))
#  pairs_bayes

## ---- echo=FALSE--------------------------------------------------------------
contrasts(df$Species)[, ] <- contr.bayes(3)

fit_bayes <- stan_glm(Sepal.Length ~ Species, data = df,
                      prior = normal(0, c(1, 1), autoscale = FALSE),
                      prior_PD = TRUE, # sample priors
                      family = gaussian(),
                      refresh = 0)

pairs_bayes <- pairs(emmeans(fit_bayes, ~ Species))

em_pairs_samples <- as.data.frame(as.matrix(emmeans::as.mcmc.emmGrid(pairs_bayes, names = FALSE)))

print(pairs_bayes)

ggplot(stack(em_pairs_samples), aes(x = values, fill = ind)) + 
  geom_density(size = 1) + 
  facet_grid(ind ~ .) + 
  labs(x = "prior difference values") + 
  theme(legend.position = "none")

## -----------------------------------------------------------------------------
hyp <- c(
  # comparing 2 levels
  "setosa < versicolor",
  "setosa < virginica",
  "versicolor < virginica",
  
  # comparing 3 (or more) levels
  "setosa    < virginica  & virginica  < versicolor",
  "virginica < setosa     & setosa     < versicolor",
  "setosa    < versicolor & versicolor < virginica"
)

## ---- eval=FALSE--------------------------------------------------------------
#  contrasts(df$Species) <- contr.sum
#  
#  fit_sum <- stan_glm(Sepal.Length ~ Species, data = df,
#                      prior = normal(0, c(1, 1), autoscale = FALSE),
#                      family = gaussian())
#  
#  em_sum <- emmeans(fit_sum, ~ Species) # the posterior marginal means
#  
#  bayesfactor_restricted(em_sum, fit_sum, hypothesis = hyp)

## ---- echo=FALSE--------------------------------------------------------------
contrasts(df$Species)[, ] <- contr.sum(3)

fit_sum <- stan_glm(Sepal.Length ~ Species, data = df,
                    prior = normal(0, c(1, 1), autoscale = FALSE),
                    family = gaussian(),
                    refresh = 0)

em_sum <- emmeans(fit_sum, ~ Species) # the posterior marginal means
  
bayesfactor_restricted(em_sum, fit_sum, hypothesis = hyp)

## ---- eval=FALSE--------------------------------------------------------------
#  contrasts(df$Species) <- contr.bayes
#  
#  fit_bayes <- stan_glm(Sepal.Length ~ Species, data = df,
#                        prior = normal(0, c(1, 1), autoscale = FALSE),
#                        family = gaussian())
#  
#  em_bayes <- emmeans(fit_sum, ~ Species) # the posterior marginal means
#  
#  bayesfactor_restricted(em_bayes, fit_sum, hypothesis = hyp)

## ---- echo=FALSE--------------------------------------------------------------
contrasts(df$Species)[, ] <- contr.bayes(3)

fit_bayes <- stan_glm(Sepal.Length ~ Species, data = df,
                      prior = normal(0, c(1, 1), autoscale = FALSE),
                      family = gaussian(),
                      refresh = 0)

em_bayes <- emmeans(fit_bayes, ~ Species) # the posterior marginal means
  
bayesfactor_restricted(em_bayes, fit_bayes, hypothesis = hyp)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API