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1 Theoretical background

1.1 Markov modeling of host genomes

For a potential bacterial or archaeal host H, a Markov model of order k is trained on its genome
by a maximum-likelihood approach. The maximum likelihoods solution of the Markov model’s
conditional probability of observing nucleotide xk+1 given preceding nucleotides x1...xk+1 is

pH(xk+1|x1...xk) =
#x1 . . . xk+1 in H + 0.25α

#x1 . . . xk in H + α
, (1)

where #x1...xk+1 is the number of times that the string x1 . . . xk+1 has been observed in the genome
of H and α is a pseudo-count parameter.

The log-likelihood per position for a sequence y = y1...yN of a phage Φ under the model H is:

LL(Φ|H) =
1

N − k

N−k∑
i=1

log pH(yi+k|yi...yi+k−1) (2)

WIsH returns a matrix that contains in its cell (i, j) the mean log-likelihood LL(Φj |Hi) of the phage
sequence Φj under the model Hi in the training set.

1.2 p-values

If the phage φ does not infect the prokaryotic host H, we assume that composition of their genomes
will be independent. Then LL(Φ|H) will be an average of independent identically distributed
random variables log pH(yi+k|yi...yi+k−1), thus following a Gaussian distribution by the central
limit theorem.

For a given host H, by selecting phage sequences Φ̄1, ...Φ̄n that do not infect H, one can fit by
maximum-likelihood the parameters µH , σH of the Gaussian null-distribution for H:

µH =
1

n

n∑
i=1

LL(Φ̄i|H) (3)

σ2H =
1

n

n∑
i=1

LL(Φ̄i|H)2 − µ2H (4)

If an organism H is predicted to be the host of a phage Φ with a score of s = LL(Φ|H), then
we can compute the following p-value:

p = P (S ≥ s) (5)

where S ∼ N (µH , σH).
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2 Benchmark details

2.1 Building new null-models

We provide in the file KeggGaussianFits.tsv the pre-computed parameters for the Gaussian null-
distribution of every prokaryotic genome used in the benchmark. If a user wants to compute
the parameters for the null-distribution for another prokaryotic genome newProk of genus G, the
following process can be used:

� Get a (large) set Z of phages that are known to infect another genus than G,

� build a model with WIsH using the genome file newProk.fna,

� run the WIsH prediction of the model of newProk against the set Z,

� fit (e.g.using maximum likelihood) a gaussian distribution over the scores given in the likelihood.
matrix file,

� add a line to a file negFits.tsv with the following format:
newProk<TAB>Mean<TAB>StandardDeviation

To get the p-values associated to a prediction, the user can then use the options -b -n negFits.tsv
when running a prediction.

2.2 p-value and accuracy

We define the precision as the fraction of correct predictions among all predictions:

Precision =
TP

TP + FP
(6)

We moreover define the ”fraction predicted” as:

Fraction predicted =
TP + FP

TP + FP + TN + FN
(7)

The accuracy is defined as the precision when making prediction on all the phage sequences
(i.e.precision for a predicted fraction of 1.0). Figure 1 shows the precision and the fraction of
predictions which the user can expect for different p-values. The user can fix a suited threshold
depending on whether a low false discovery rate or a high amount of predictions is desired.
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2.3 Influence of the order of the Markov model

As shown the figure 2, the accuracy is generally maximal for order 8. The drop in accuracy for
higher orders could be explained by the too high specificity of the models to their host, and fail
at detecting a strong signal in more distant genomes such as phages that infect them. Another
point is that at order 9 the model parameters cannot be estimated accurately enough anymore,
because a genome of typical length 5 Mbp will yield only about 5.106/410 = 4.8 counts per 10-mer,
but will still yield 19 counts per 9-mer. The optimal order k = 8 is thus a general compromise
learning as complex a model as possible with conditional probabilities that are still sufficiently
reliably estimated.

The order of the model can be tuned accordingly to the size of the prokaryotic genome use for
training. Figure 3 shows the accuracies of the prediction depending on the order of the Markov
model when training on truncated versions of the prokaryotic genomes (down to 25kbp and 1Mbp).

2.4 ROC curve on WIsH benchmark

For plotting the ROC curves in figure 4, z-scores were used instead of raw log-likelihood (calling
WIsH with -z option) to have comparable values between two different phages. As for log-likelihood
values, the higher the z-score, the more probable the interaction is. The areas under the ROC curve
are comparable when using WIsH or VirHostMatcher for full-genome phage sequences, although
slightly better for WIsH.
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2.5 Detailed accuracies on different benchmarks

Dataset # Viral # Prokaryotic
Contig size WIsH VirHostMatcher

sequences genomes (k = 6)

WIsH benchmark 1 420 3 780

1kb 28.0 7.5
5kb 35.5 25.6
10kb 38.7 34.8

Full genome 42.5 42.3

VHM benchmark 1 427 31 986

1kb 28.2 ≈ 7 *
5kb 32.8 ≈ 21 *
10kb 33.9 ≈ 26 *

Full genome 35.3 33 **

*From (Ahlgren et al., 2016), Fig3A.
**From (Ahlgren et al., 2016), Table 3.

Table 1: Accuracies at genus level.
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Figure 1: Depending on the desired trade-off between number of predicted sequences and accuracy
of the predictions, the user can select a suitable p-value threshold. Top: Evaluation on full-length
phage genomes. Bottom: Evaluation on 3kbp contigs.
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Figure 2: Accuracies of the host prediction on 3 kbp contigs, depending on the order of the Markov
model.
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Figure 3: Accuracies of the host prediction on 3 kbp contigs, depending on the order of the Markov
model. Top: Training prokaryotic genomes truncated to 25kbp. Bottom: Training prokaryotic
genomes truncated to 1Mbp.
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Figure 4: Receiver operator (ROC) curves for all predictions ranked by z-scores. TPR = TP / (TP
+ FN) = true positive rate, FPR = FP / (FP + TN) = false positive rate. AUC stands for Area
Under the ROC Curve. Top. ROC for predicting on full-length phage genomes. Bottom. ROC
when predicting on 3 kpb contigs.
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3 Evaluation under lower prokaryotic diversity

In real use cases, the genera richness of the prokaryotic fraction is typically between 10 and 150
genera (Santigli et al., 2016; França et al., 2016; Nasidze et al., 2009). If the prokaryotic fraction
has been sequenced as well, one can restrict the prediction of the host to the genera that are
present (or even dominant) in the prokaryotic fraction. By randomly subsampling fewer genus
(respectively orders), Figure 5 (respectively Figure 6) present an estimate of the expected accuracy
when restricting the prediction to the corresponding number of genus (resp. orders).

Figure 5: Expected accuracy when predicting on 3 kbp phage sequences for hosts belonging to
fewer genus. The error bars indicate 95% of confidence interval, over 300 replicates. For a better
readability of the plot, the error bars are horizontally shifted by 0.1. Solid lines: WisH, dashed
lines: VirHostMatcher.
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Figure 6: Expected accuracy when predicting on 3 kbp phage sequences hosts over fewer orders.
The error bars indicate 95% of confidence interval, over 300 replicates. For a better readability of the
plot, the error bars are horizontally shifted by 0.1. Solid lines: WisH, dashed lines: VirHostMatcher.

4 Evaluation on 16S sequence identity

Yarza et al. (2014) state that ”although there are official rules for the nomenclature of bacteria
and archaea, the entities that are known as taxa and their hierarchical classifications are artificial
constructs and so are somewhat subjective”. As a consequence, bacteria of different genera can be
very closely related whereas bacteria of the same genus can be more divergent. For example, certain
Escherichia and Shigella strains have more than 99% residue identity for their 16S rRNA genes and
certain Escherichia and Salmonella), whereas some bacteria in the same genus Escherichia have
less than 96% residue identity among their 16S rRNA genes. Thus, a classification of bacteria and
archaea based on a more quantitative criterion would be preferable in general and, in particular,
to test the accuracy of the WIsH predictions. Yarza et al. (2014) proposes such a classification
based on 16S sequence identity using 16S sequence identity thresholds that typically correspond to
the usual taxonomy (these thresholds are reported in table 3). Tables 2 and 3 show the accuracies
of WIsH and VHM under these 16S taxonomic criteria for 3kbp contigs and full-length genomes
respectively.

Figure 7 shows the relation between the p-value of the best prediction made by WIsH and the
16S identity between the predicted host and the actual one.
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Taxonomic level Genus Family Order Class Phylum

WIsH accuracy – standard taxonomy (%) 32.3 36.8 42.1 55.9 70.1
VHM accuracy – standard taxonomy (%) 20.4 26.0 31.6 42.8 59.1

16S seq. id. threshold (%) 94.5 86.5 82.0 78.5 75.0

WIsH accuracy – 16S criterion (%) 38.4 55.5 63.8 69.3 87.1
VHM accuracy – 16S criterion (%) 26.1 46.1 55.3 63.8 82.1

Table 2: Accuracies of the predictions on the WIsH benchmark (3kbp) using 16S rRNA residue
identity thresholds for taxonomic assignment.

Taxonomic level Genus Family Order Class Phylum

WIsH accuracy – standard taxonomy (%) 42.5 47.6 51.6 63.0 76.7
VHM accuracy – standard taxonomy (%) 42.3 50.1 55.1 64.6 75.7

16S seq. id. threshold (%) 94.5 86.5 82.0 78.5 75.0

WIsH accuracy – 16S criterion (%) 46.9 62.6 70.4 74.7 89.5
VHM accuracy – 16S criterion (%) 50.1 65.9 73.5 77.3 87.6

Table 3: Accuracies of the predictions on the WIsH benchmark (full-length phage genomes) using
16S rRNA residue identity thresholds for taxonomic assignment.

Figure 7: 16S percent identity between actual and predicted host with respect to the p-value
threshold. The line is obtained by rolling-mean smoothing of the scatter plot with k = 200.
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5 Evaluation with distant prokaryotic genomes

Since the diversity of the prokaryotic world is yet not fully known, the genomes of the actual host
of a phage may still be unavailable. In this case, one shall rely on more distantly available genomes
(organism in the same genus as the actual host for instance).

We evaluate here the accuracies of the prediction when removing from the evaluation the
genomes of prokaryotes closely related to the actual host. More specifically, for a given phage,
we predict only using models built on prokaryotes belonging to a different genus than the actual
infected genus. We kept only the phages (N = 1016) infecting genus having more than a single
genus in their family, since it cannot otherwise lead to any right prediction at family level. The
resulting accuracies in table 4 do not prove to be enough for a reliable prediction of the taxonomy
of the host. However, by restricting the number of possible orders in the prediction, as done in the
section 3, we show on figure 8 that the prediction accuracies reach more acceptable values. WIsH
and VirHostMatcher have comparable accuracy at family level, and WIsH improve on VirHost-
Matcher on higher taxa prediction. VirHostMatcher is slightly better than WIsH at family level
when testing on 10kbp contigs (cf. Figure 9), but the accuracy of both tools at family level is so
low that it will not be useful in practice.

In practice, for each viral metagenome generated the prokaryotic fraction of the sample can be
obtained and sequenced as well. By binning the prokaryotic metagenomic contigs, one can learn
the WIsH models on the set of sequences of each bin (with model order that can be adjusted to the
total length of the bins according to the graphs in section ??), and use them to scan the associated
viral metagenome. If a virus is present in a significant amount, there is good hope for the infected
organism to be also part of the prokaryotic fraction, and therefore to be accurately detected by
WIsH.

Taxonomic level Genus Family Order Class Phylum

WIsH accuracy – 16S criterion (%) 10.8 39.5 51.8 60.9 81.6
VHM accuracy – 16S criterion (%) 9.7 31.0 44.2 55.2 77.4

WIsH accuracy – std. taxonomy (%) 0 13.8 28.0 48.8 62.6
VHM accuracy – std. taxonomy (%) 0 12.7 22.1 38.4 51.0

Table 4: Accuracies of the predictions on the WIsH benchmark on 3kpb contigs when using only
distantly related genomes from the host.
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Figure 8: Accuracy of the predictions on 3kbp contigs when restrincting the diversity of the predic-
tions and removing models corresponding to the infected genus. Solid lines: WIsH, dashed lines:
VirHostMatcher.
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Figure 9: Accuracy of the predictions on 10kbp contigs when restrincting the diversity of the
predictions and removing models corresponding to the infected genus. Solid lines: WIsH, dashed
lines: VirHostMatcher.
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6 Run times

Runtimes were measured on a Linux PC with two 8-core 2.6 GHz Intel Xeon E5-2640 v3 processors.

Dataset WIsH VirHostMatcher

Earth’s virome contigs (N = 125.842) 10h39m26s -

Contigs from WIsH benchmark (N = 1420)
1kb 32s 16h37m
5kb 2m20s 16h44m
10kb 4m33s 16h43m

Table 5: Runtimes for Earth’s virome contigs and for genomic fragments of the pahges of the WIsH
benchmark.

7 Annotation of Earth’s virome contigs

Hosts have been predicted using WIsH for the 125,842 metagenomic viral contigs (mVCs) of the
Earth’s virome (Paez-Espino et al., 2016) using prokaryotic models from the WIsH benchmark
dataset. For a given p-value threshold on the prediction, the expected precision was measured –
defined as the fraction of the WIsH predictions that match the original host annotation of (Paez-
Espino et al., 2016). These annotations originally covered 7.7% of the contigs using alternative host
prediction methods such as CRISPR or tRNA sequence matches. Here, only the host annotations
whose genus was represented in our prokaryotic dataset were kept, finally amounting to 5.3% of
the mVCs. Figure 10 shows the expected precision with respect to the fraction of newly annotated
contigs. For instance, setting a p-value threshold of 10−1 (red line) allows to find annotation for
more than half of the unannotated contigs, while being consistent at 70% with the original host
family annotation.

7.1 Factors influencing the prediction quality

7.2 Influence of encoded tRNAs

The more tRNA encoded in the viral genome, the worse was the prediction. The number of true (in
green) and wrong (in red) predictions at species and genus level respectively are plotted in figures 11
and 12. At species level, all predictions made for phage genomes encoding more than 4 tRNAs are
wrong. This is also significant at genus level since the 10 correctly predicted phages encoding more
than 30 tRNA in figure 12 come down to only 1 single phage infecting the genus Mycobacterium
(the 10 instances are all coming from the cluster C1 described in Pope et al. (2015)).

Taxonomic level Specie Genus Family Order Class Phylum

p-value 5.10−12 3.10−11 9.10−16 2.10−16 2.10−11 5.10−11

Table 6: p-value under a Wilcoxon rank-sum test of number of encoded tRNAs between phages
with correctly and wrongly predicted host.
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Figure 10: Precision (using original annotation as reference) at family level vs. fraction of newly
annotated contigs.

Figure 11: Distribution of the number of encoded tRNAs for correct (green) or wrong (red) host
predictions for 1,420 phages of the WIsH benchmark, at species level.
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Figure 12: Distribution of the number of encoded tRNAs for correct (green) or wrong (red) host
predictions for 1,420 phages of the WIsH benchmark, at genus level.

7.3 Influence of number of coding sequences on prediction

As for the number of encoded tRNAs, the more coding sequences (CDS) present in the genome,
the less accurate the host prediction gets.

Taxonomic level Specie Genus Family Order Class Phylum

p-value 1.10−12 1.10−5 9.10−9 1.10−7 3.10−7 1.10−7

Table 7: p-value under a Wilcoxon rank-sum test of number of coding sequences between phages
with correctly and wrongly predicted host.
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Figure 13: Distribution of the number of CDS for correct (green) or wrong (red) best host predic-
tions for 1,420 phages of the WIsH benchmark, at species level.

Figure 14: Distribution of the number of CDS for correct (green) or wrong (red) best host predic-
tions for 1,420 phages of the WIsH benchmark, at genus level.
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Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K.-H., Whitman, W. B., Euzéby, J., Amann, R., and
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