swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd
Tip revision: 2878a3d9f5a3b9b89a0084a897bef3414e9de4a2 authored by nwbarendregt on 03 May 2022, 15:08:29 UTC
Add files via upload
Add files via upload
Tip revision: 2878a3d
MCMC_burn_UGM.m
% MCMC_burn_UGM.m
% Performs MCMC burn-in used for fitting UGM to tokens task data from
% Barendregt et al., 2022.
clear
% Define chain length parameters:
N_burn = 1e4; N_chain = 10;
% Define prior for seeding chains:
thresh_min = 0; thresh_max = 25;
a_min = 0; a_max = 5;
sigma_min = 0; sigma_max = 5;
tau_min = 0.1; tau_max = 0.5;
mn_min = 0; mn_max = 5;
% Define prior to enforce non-negativity of parameters:
prior = [thresh_min a_min sigma_min tau_min mn_min];
% Define task parameters to simulate model:
Nt = 15; t_d = 0.170;
speed = t_d*1000; speed_ind = 1; % 1 for slow task, 2 for fast task.
% Load subject data:
load('trials.mat'); sub_ind = 1; % Determines which subject's data to analyze.
idSubject = [6 7 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27];
Sub_ID = idSubject(sub_ind);
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
% Load and format stimulus data:
Sub_stim = trials.sTokenDirs((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
stim = NaN(length(Sub_stim),Nt);
for i = 1:length(Sub_stim)
stim(i,:) = str2num(strtrim(regexprep(Sub_stim{i},'.{1}','$0 ')));
stim(i,:) = 2*(stim(i,:)-1)-1;
end
% Pre-allocate storage for final point in each chain and likelihood of
% that final point:
chain_init = NaN(5,N_chain); L_init = NaN(1,N_chain);
% Define covariance matrix of Gaussian proposal distribution (found
% experimentally by tuning):
S = 0.1*[10 0 0 0 0; 0 0.5 0 0 0; 0 0 0.1 0 0; 0 0 0 0.001 0; 0 0 0 0 0.05];
for i = 1:N_chain
% Seed each chain using uniform prior over parameters:
theta = [rand*(thresh_max-thresh_min)+thresh_min;...
rand*(a_max-a_min)+a_min; rand*(sigma_max-sigma_min)+sigma_min;...
rand*(tau_max-tau_min)+tau_min; rand*(mn_max-mn_min)+mn_min];
% Pre-allocate storage of average synthetic data generated from
% sampled model:
Synth_Data = zeros(1,Nt+1);
for n = 1:50
% Pre-allocate storage of synthetic data generated from sampled
% model:
T_Data = NaN(1,length(Sub_T));
% Generage synthetic response data using sampled model and subject
% stimulus:
for l = 1:length(Sub_T)
T = tok_sim_UGM(Nt,theta(1),theta(2),theta(3),theta(4),stim(l,:));
T_Data(l) = round(theta(5)*randn+T);
while (T_Data(l) > Nt) || (T_Data(l) < 0)
T_Data(l) = round(theta(5)*randn+T);
end
end
% Average synthetic data over many (50, found experimentally by
% tuning) realizations:
Synth_Data = Synth_Data+histcounts(T_Data,-0.5:1:(Nt+0.5),'normalization','probability');
end
% Add small non-zero entries to compute likelihood of sampled model:
Synth_Data(Synth_Data == 0) = eps; Synth_Data = Synth_Data/sum(Synth_Data,'all');
% Compute likelihood of sampled model/parameters:
L = sum(log(Synth_Data(Sub_T+1)));
% Evolve chain using MCMC:
for j = 1:N_burn
[theta,L] = MCMC_UGM(theta,L,Nt,Sub_T,stim,S,prior);
end
% Store final state of chain and likelihood of the final state:
chain_init(:,i) = theta; L_init(:,i) = L;
end
% Save data from burn-in to use for sampling (using Posterior_Sample_UGM.m):
% load('model_fit_UGM.mat')
% model_fit_UGM(sub_ind,speed_ind).idSubject = Sub_ID;
% model_fit_UGM(sub_ind,speed_ind).speed = speed;
% model_fit_UGM(sub_ind,speed_ind).chain_init = chain_init;
% model_fit_UGM(sub_ind,speed_ind).L_init = L_init;
% save('model_fit_UGM.mat','model_fit_UGM');