Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd
  • Code
  • Branches (1)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • bbb89f8
  • /
  • Figure 6 -- Tokens Task Data Analysis
  • /
  • MCMC_burn_UGM.m
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:05a1963660f5d8cd69129aa82f3e5c27d18f71d7
directory badge Iframe embedding
swh:1:dir:d615f04e1fe23058870cce8c51d6ba6cdac3dbd8
revision badge
swh:1:rev:2878a3d9f5a3b9b89a0084a897bef3414e9de4a2
snapshot badge
swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2878a3d9f5a3b9b89a0084a897bef3414e9de4a2 authored by nwbarendregt on 03 May 2022, 15:08:29 UTC
Add files via upload
Tip revision: 2878a3d
MCMC_burn_UGM.m
% MCMC_burn_UGM.m
% Performs MCMC burn-in used for fitting UGM to tokens task data from
% Barendregt et al., 2022.

clear

% Define chain length parameters:
N_burn = 1e4; N_chain = 10;

% Define prior for seeding chains:
thresh_min = 0; thresh_max = 25;
a_min = 0; a_max = 5;
sigma_min = 0; sigma_max = 5;
tau_min = 0.1; tau_max = 0.5;
mn_min = 0; mn_max = 5;

% Define prior to enforce non-negativity of parameters:
prior = [thresh_min a_min sigma_min tau_min mn_min];

% Define task parameters to simulate model:
Nt = 15; t_d = 0.170;
speed = t_d*1000; speed_ind = 1; % 1 for slow task, 2 for fast task.

% Load subject data:
load('trials.mat'); sub_ind = 1; % Determines which subject's data to analyze.
idSubject = [6 7 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27];
Sub_ID = idSubject(sub_ind);
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');

% Load and format stimulus data:
Sub_stim = trials.sTokenDirs((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
stim = NaN(length(Sub_stim),Nt);
for i = 1:length(Sub_stim)
    stim(i,:) = str2num(strtrim(regexprep(Sub_stim{i},'.{1}','$0 ')));
    stim(i,:) = 2*(stim(i,:)-1)-1;
end

% Pre-allocate storage for final point in each chain and likelihood of
% that final point:
chain_init = NaN(5,N_chain); L_init = NaN(1,N_chain);

% Define covariance matrix of Gaussian proposal distribution (found 
% experimentally by tuning):
S = 0.1*[10 0 0 0 0; 0 0.5 0 0 0; 0 0 0.1 0 0; 0 0 0 0.001 0; 0 0 0 0 0.05];

for i = 1:N_chain

    % Seed each chain using uniform prior over parameters:
    theta = [rand*(thresh_max-thresh_min)+thresh_min;...
        rand*(a_max-a_min)+a_min; rand*(sigma_max-sigma_min)+sigma_min;...
        rand*(tau_max-tau_min)+tau_min; rand*(mn_max-mn_min)+mn_min];

    % Pre-allocate storage of average synthetic data generated from 
    % sampled model:
    Synth_Data = zeros(1,Nt+1);
    for n = 1:50

        % Pre-allocate storage of synthetic data generated from sampled 
        % model:
        T_Data = NaN(1,length(Sub_T));

        % Generage synthetic response data using sampled model and subject
        % stimulus:
        for l = 1:length(Sub_T)
            T = tok_sim_UGM(Nt,theta(1),theta(2),theta(3),theta(4),stim(l,:));
            T_Data(l) = round(theta(5)*randn+T);
            while (T_Data(l) > Nt) || (T_Data(l) < 0)
                T_Data(l) = round(theta(5)*randn+T);
            end
        end

        % Average synthetic data over many (50, found experimentally by 
        % tuning) realizations:
        Synth_Data = Synth_Data+histcounts(T_Data,-0.5:1:(Nt+0.5),'normalization','probability');
    end

    % Add small non-zero entries to compute likelihood of sampled model:
    Synth_Data(Synth_Data == 0) = eps; Synth_Data = Synth_Data/sum(Synth_Data,'all');

    % Compute likelihood of sampled model/parameters:
    L = sum(log(Synth_Data(Sub_T+1)));
    
    % Evolve chain using MCMC:
    for j = 1:N_burn
        [theta,L] = MCMC_UGM(theta,L,Nt,Sub_T,stim,S,prior);
    end

    % Store final state of chain and likelihood of the final state:
    chain_init(:,i) = theta; L_init(:,i) = L;
end

% Save data from burn-in to use for sampling (using Posterior_Sample_UGM.m):
% load('model_fit_UGM.mat')
% model_fit_UGM(sub_ind,speed_ind).idSubject = Sub_ID;
% model_fit_UGM(sub_ind,speed_ind).speed = speed;
% model_fit_UGM(sub_ind,speed_ind).chain_init = chain_init;
% model_fit_UGM(sub_ind,speed_ind).L_init = L_init;
% save('model_fit_UGM.mat','model_fit_UGM');

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API