pong:

fast analysis and visualization of latent clusters in
population genetic data

Developers (2016): Katherine Z. Liu?, Tyler D. Devlin®3, Aaron A. Behr*, Sohini
Ramachandran®*

Past developers: Gracie Liu-Fang

Department of Computer Science, Brown University, Providence, RI, USA
2Center for Computational Molecular Biology, Brown University, Providence, RI, USA
3Division of Applied Mathematics, Brown University, Providence, RI, USA
“Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA

pong is freely available at https://github.com/abehr/pong/ and can be installed using the
Python package management system pip. This manual is the companion to version 1.4.7 of
the software, released on 3/13/2017.

For a short guide to using pong, download the pong README at
http://brown.edu/Research/Ramachandran_ Lab/projects/.

To request features or report issues when using pong, please visit
https://github.com/abehr/pong/issues.

*To whom correspondence should be addressed:
aaron__behr@alumni.brown.edu, sramachandran@brown.edu.

https://github.com/abehr/pong/
http://brown.edu/Research/Ramachandran_Lab/projects/
https://github.com/abehr/pong/issues
mailto:aaron_behr@alumni.brown.edu?subject=pong
mailto:sramachandran@brown.edu?subject=pong

Software manual contents

1 Introduction
1.1 Citation information

1.2 Overview of pong’s implementation
2 New features in pong version 1.4.9

3 Installing pong
3.1 Linux-specific tips
3.2 Mac-specific tips e e

4 Running pong with example data

5 Input to pong
5.1 Clustering output (required)
5.2 filemap file (required)
5.3 Population labels (optional, but recommended)
5.4 Population order and detailed names (optional)

5.5 Custom colors for visualization (optional)

6 Additional input options
6.1 Specifying an alternate distance metric L 0L
6.1.1 Jaccard similarity (default) 0oL
6.1.2 The sum of squared differences
6.1.3 Average Manhattan distance
6.1.4 G . e
6.1.5 Custom similarity metricso
6.2 Varying the threshold for determining modes
6.3 Using a greedy approach to identify modes
6.4 Server options e
6.4.1 Disabling the server. L
6.4.2 Specifying the Tornado server’s port

© oo N

10
11

7 pong’s output

7.1 Output options L
7.1.1 Specifying the output directory
7.1.2 Forced overwriting of an existing output directory

7.2 Output files L
7.2.1 params_used.txt
7.2.2 result_summary.txto Lo

7.3 Additional output (-vflag) L
7.3.1 best_alignment__across K.tet
7.3.2 best_alignment_per K.txt
7.3.3 cluster _matching results directory
7.3.4 distruct_perm_ files directory

7.3.5 runs directory

8 pong’s D3.js-based Visualization

8.1 Main visualization
8.2 Interactive features in pong’s visualization
8.2.1 Detecting resized browser windows
8.2.2 Tooltip displaying population information
8.2.3 Tooltip displaying runlDs represented by a barplot . . .
8.2.4 Highlighting specific clusters
8.2.5 Highlighting specific populations
8.2.6 Zooming into barplots
8.2.7 Visualizing multimodality for a given value of K

8.3 Downloading barplots oo

9 Examples

9.1 1000 Genomes phase 3 dataset, main visualization

9.2 Chicken dataset from Rosenberg et al. [2001], visualizing modes

14
14
14
14
14
15
15
15
15
15
16
16
16

16
16
17
17
17
17
17
17
18
18
18

1 Introduction

A series of generative models known as “mixed-membership models” have been developed that
model grouped data, where each group is characterized by a mixture of latent components.
One well-known mixed-membership model is latent Dirichlet allocation [Blei et al., 2003], in
which documents are modeled as a mixture of latent topics. Another widely used example
is the model implemented in the population-genetic program STRUCTURE [Pritchard et al.,
2000, Falush et al., 2003, Hubisz et al., 2009, Raj et al., 2014], where individuals are assigned
to a mixture of latent clusters, or populations, based on multilocus genotype data; this same
model underlies the program ADMIXTURE [Alexander et al., 2009].

In the population-genetic application of mixed-membership models, for a given multilocus
genotype dataset with N individuals and a value for K (the number of populations, or
clusters, from which the individuals derive ancestry), the output produced by STRUCTURE
and ADMIXTURE is an N x K matrix of membership coefficients, referred to here as a “Q)
matrix”. Each entry ¢;; represents the membership coefficient for individual 7 in cluster j,
and can be interpreted as the inferred proportion of individual 7’s alleles inherited from the
jth cluster.

A common pipeline when applying model-based clustering methods to genotype data is to
increment K from 2 to some user-chosen maximum value, and to conduct many runs of
clustering inference for a fixed value of K, resulting in the routine production of around 100
() matrices for the analysis of a single dataset. Post-hoc processing of these () matrices can
be laborious, due to changing values of K and because the stochastic nature of clustering
methods produces different () matrices for identical inputs across independent iterations of
clustering inference.

Current algorithms designed to process and visualize () matrices face three challenges

1. label switching: for the same inputs, column ¢, ; in the) matrix produced by one run
may not correspond to column ¢, ; in the @2 matrix produced by another run [Stephens,
2000, Jasra et al., 2005, Jakobsson and Rosenberg, 2007].

2. multimodality: where, even after adjusting for label switching, different) matrices
can be inferred from the same input data (see also CLUMPP by Jakobsson and
Rosenberg [2007]).

3. alignment-across-K: when the input parameter K is changed (all other inputs being
equal), there is no column-permutation of an @)y« x matrix that exactly corresponds to
any Qnx(k+1) matrix (see also CLUMPAK by Kopelman et al. [2015]).

Here, we present pong, a package consisting of a new algorithm for fast post-hoc analysis of
clustering inference output from population genetic data and a custom, interactive D3.js-
based data visualization (D3.js; https://github.com/mbostock/d3). Our package solves the
challenges of accounting for label switching, characterizing multiple modes, and aligning
() matrices across values of K by constructing weighted bipartite graphs for each pair of
() matrices depicting similarity in membership coefficients between clusters. pong allows

https://github.com/mbostock/d3

users to begin interacting with their results potentially seconds after clustering inference
has been completed. When applied to clustering inference output, pong displays an accurate
representative () matrix for each mode for each value of K, clarifies differences among modes
that are difficult to identify through visual inspection, and characterizes results that may be
overlooked when interpreting output by hand.

This manual provides comprehensive information on customizing pong’s algorithm and visual-
ization. A quick overview for installing and using pong can be found in the pong reference
card, available at http://brown.edu/Research/Ramachandran Lab/projects/.

1.1 Citation information

For more details and comparisons of pong to existing methods for visualization of cluster-
ing inference from population genetic data, please refer to our paper by Behr et al., doi:
http://dx.doi.org/10.1101/031815, available at biorxiv (http://biorxiv.org/content/early/
2015/11/14/031815).

1.2 Overview of pong’s implementation

pong’s back end algorithm is written in Python and pong is run with a one-line command in the
terminal. While providing covariates is strongly advised so visualizations can be annotated
with relevant metadata, pong only requires one tab-delimited file containing relative paths to
each @) matrix (detailed further in Section 5.2). The command line can also contain a series
of flags which allows the user to customize the visualization. Executing a command in pong
opens a Tornado web server (http://www.tornadoweb.org/), and eventually prompts the user
to open a web browser and connect to a specified localhost. This action then renders the
visualization developed by pong’s front end.

After alignment within and across K, pong’s back end generates a JavaScript Object Notation
(JSON) file for data interchange with the front end. The JSON entries vary but, at a
minimum, contain paths to the input () matrices, user-created run identification codes (or
runlDs), information on identified modes, and the color permutation used for visualization.
To render its visualization, pong does not preload () matrices into the JSON sent to the front
end. Instead, the user’s actions in the browser window lead to requests for data, such as @)
matrices, from the locally run server; these data are sent to pong’s front end via sockets. This
increases the efficiency of the visualization.

pong’s visualization is implemented in Javascript and uses D3.js, a library that allows developers
to create dynamic and interactive web applications with bound data. This visualization
replaces DISTRUCT [Rosenberg, 2004] and other methods for the graphic display of
clustering inference output, and produces a visualization that is user-friendly, visually
appealing and informative regarding the input sample’s population structure. If the user
does not provide a color permutation to pong, the colors used to generate the visualization
are chosen from color groupings available in ColorBrewer (http://colorbrewer2.org/).

http://brown.edu/Research/Ramachandran_Lab/projects/
http://biorxiv.org/content/early/2015/11/14/031815
http://biorxiv.org/content/early/2015/11/14/031815
http://www.tornadoweb.org/
http://colorbrewer2.org/

What sets pong apart from existing methods for the graphical display of population structure
is a series of interactive features. In the browser’s main visualization, the user may click on
any population — or set of populations, by holding the SHIFT key down — to highlight the
selected group’s genome-wide ancestry across values of K. Clusters can be highlighted by
clicking on a particular cluster color, and users can zoom into barplots. When mousing over a
population, color swatches corresponding to the average membership (as a percentage) in each
cluster for that population are displayed in a tooltip. Within each dialog box characterizing
modes for a given value of K, selecting a checkbox on the top right allows the user to highlight
differences between the major mode’s representative plot (the top plot in the dialog box) and
each minor mode’s representative plot. Mousing over populations within the dialog box also
displays population-level average membership in each cluster to the right of the dialog box.

2 New features in pong version 1.4.9

The following features have been added to pong with this version:

e The runs represented by a given barplot are now listed by runlD in a tooltip (Section
8.2.3). The website tour also introduces users to this new tooltip (Section 4).

The following issues have been resolved with this version:

e Some users were experiencing compatibility issues with newer versions of Munkres and
other packages pong depends on. Setup now performs more thorough checks to ensure
that all dependent packages will be compatible with pong.

e If the optional pop_names file contained duplicate entries, the program would fail
unexpectedly. pong now performs more thorough input validation and provides a useful
error message when duplicate entries are detected in this file.

3 Installing pong

pong has been tested on Mac OS X (10.8-10.10), Linux (Ubuntu 15.04, Linux Mint 17.2),
and Windows 7. pong is hosted on PyPI (https://pypi.python.org/pypi) and can thus be
easily installed using the Python package management system pip. Running pong requires
Python 2 (version 2.7.8 or later) and a modern web browser; pong has been tested on Chrome,
Firefox, and Safari. pong is not compatible with Internet Explorer. The source code for pong
is available at https://github.com/abehr/pong.

To install pong, run:

pip install pong

https://pypi.python.org/pypi
https://github.com/abehr/pong

3.1 Linux-specific tips

On some Linux systems, installation of pong may fail due to a permissions error. In that case,
try running

sudo pip install pong

You will be prompted to enter in your computer login password. If that doesn’t work either,
try running the command as the super user.

su # you will be prompted to enter an administrator password
pip install pong
exit # to quit out of super user mode

3.2 Mac-specific tips
Note that the Apple system default Python cannot run pong. Python 2.7 and pip can
be installed manually, but we find that setup is easiest if the user has both Homebrew

(http://brew.sh) and Homebrew-installed Python. Using Homebrew, pong’s dependencies,
and pong itself, can be installed / updated as follows:

brew install python / brew upgrade python
pip install pip / pip install --upgrade pip
pip install pong / pip install --upgrade pong

We will continue to add features to pong and will post regarding new releases on pong’s git
repository (https://github.com/abehr/pong/). To upgrade, users should run

pip install --upgrade pong

4 Running pong with example data

pong is executed through the command line in a terminal window. To see a complete list of
options with descriptions, run:

pong -h

To run pong from the command line as in the above example, make sure the filepath to python
executables on your computer is in your PATH. If this is not the case, the you can run pong
commands using the prefix

http://brew.sh
http://brew.sh
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Homebrew-and-Python.md
https://github.com/abehr/pong/

python path_to_python_executables/pong [...continue command line...]

Users can download an example dataset from the Ramachandran Lab website or from the
Ramachandran Lab Data Repository. This data is comprised of ADMIXTURE [Alexander
et al., 2009] runs on the 1000 Genomes dataset phase 3 (final variant set released on November
6, 2014, with first- and second- degree relatives removed; see also Consortium [2015]). Our
input to ADMIXTURE was 225,705 genome-wide single-nucleotide variant genotypes from
2,426 unrelated individuals. In the example dataset, ADMIXTURE was run with K ranging
from 2 to 8 and 8 runs per value of K'; this produced a total of 56 () matrices.

To analyze the example dataset provided with pong, navigate into the unzipped example
dataset directory pong-example-data_1kG-p3 and run:

pong -m pong filemap -n pop_order_expandednames.txt -i ind2pop.txt

Information regarding pong’s application to the input data will be displayed to your terminal
window. Once the back end has completed running, pong initializes a local server and informs
the user of its location. A message will be displayed in the terminal window telling the
user to navigate to http://localhost:4000 (port 4000 is used by default; the user can change
the port on which pong operates with the command line option --port). Once the user
navigates to http://localhost:4000, pong will detect a new browser connection and begin
loading the its visualization of the () matrices. pong also has a website tour, implemented
using http://bootstraptour.com/, to introduce users to features in pong’s visualization.

5 Input to pong

This section details the required and optional inputs that pong accepts.

5.1 Clustering output (required)

pong accepts clustering output files, i.e. () matrices, from a variety of clustering inference
methods. Note that users must remove leading/trailing rows from input) matrices (i.e. for
a dataset with NV samples, every () matrix file in the filemap should have exactly N lines).
pong does not accept) matrices with K = 1, which do not provide any information.

Two command line flags can be used to customize pong’s treatment of these () matrices; these
flags are detailed below.

1. Users can indicate that pong should ignore columns in () matrices.

Command line flag: -c number / --ignore_cols number

If -c is not specified, 0 is used by default. Because some clustering inference methods
report individual covariates as leading columns before along individual membership

http://www.brown.edu/Research/Ramachandran_Lab/projects
http://ramachandran-data.brown.edu/
http://ramachandran-data.brown.edu/
http://bootstraptour.com/

coefficients, the user can use this flag to indicate that pong should skip a certain number
of leading columns in each row of the input () matrices before parsing individual
membership coefficients.

For example, use —c 5 for some versions of STRUCTURE output, because the first five
columns contain individual-level metadata.

Trailing columns of covariates in a () matrix file will not be parsed by pong. That is,
after —c number leading columns are ignored, only the first K columns are used by
pong, where K is specified by the user in the filemap).

2. Users can provide () matrices with any column delimiter.

Command line flag: —-col_delim

By default, pong parses () matrix files as whitespace-delimited. However, the user
provide a specific column delimiter in quotes — such as "," (comma) or "\t" (tab) —
to be used for parsing all () matrices with this flag.

5.2 filemap file (required)

Command line flags: -m filename / --filemap filename

A small amount of information about the input () matrices must be provided to pong, in the
form of a filemap. This is the only command-line flag required to run pong. The filemap must
be a three-column, tab-delimited file. Each () matrix is represented by a three-column line in
the filemap with the following format:

Column 1. The runID, a unique label for the) matrix (e.g. the string “run5_K7”). Note:
A runID must begin with a letter (A-Z/a-z), followed by any number of hyphens (-),
underscores (_), letters, or numbers. Other characters are not allowed in runIDs.
Hashmarks (#) can be used in the filemap to indicate the start of a comment.

Column 2. The K value for the () matrix. Each value of K between K,,;, and K,,,, must
be represented by at least one () matrix in the filemap; if not, pong will abort.

Column 3. The path to the) matrix, relative to the location of the filemap. Thus, if the
filemap is in the same directory as the () matrix file, this is just the name of the @)
matrix file. Note that the metadata provided in the filemap allow the user to apply
pong to () matrices in multiple directories in the user’s computer. The path cannot
contain a hashmark (#) because it will be interpreted as a comment.

It is important that the columns of the filemap are in the right order and that the file is
tab-delimited. For reference, Table 1 below shows a portion of the filemap corresponding to
the example dataset.

Table 1: Example lines of a tab-delimited filemap with a unique runlD, a K value, and a
filepath for every iteration in the 1000 Genomes example dataset. An example comment is
shown in line 9.

’ \ runlD K value filepath ‘
1| k2rl 2 runl/pruned_ filtered_ 1kg phase3.2.Q
2 | k2r2 2 run2/pruned_ filtered_ 1kg phase3.2.Q
3 | k2r3 2 run3/pruned_ filtered_ 1kg phase3.2.Q
4 2

k2r4 run4 /pruned_ filtered 1kg phase3.2.Q

9 | #another test comment
10 | k3rl 3 runl/pruned_filtered 1kg phase3.3.Q

5.3 Population labels (optional, but recommended)

Command line flags: =i ind2pop_arg / --ind2pop ind2pop_arg

In most population-genetic datasets, individuals have a population label (or code, or number),
that indicate that individual’s origin; we refer to the set of these labels as ind2pop data. If
provided with this information, pong’s visualization will group individuals into populations by
a label, partition populations with black lines, and sort individuals within each population
by their membership in the population’s major cluster (the cluster in which the population
has the greatest membership, when membership coefficients are summed over all individuals).
pong performs this sorting operation based on cluster membership for each population on the
bottom-most plot in the main visualization, which is the representative run of the major
mode of the highest K value across all input () matrices. pong then propagates the order of
individuals determined after sorting through all the other visualized () matrices, keeping the
order of individuals consistent across the visualization.

The argument to the ind2pop command line flag can be either of the following:

e An integer, representing the () matrix column number that contains ind2pop data. For
example, use -i 4 for most versions of STRUCTURE output.

e The path to an ind2pop file, where line ¢ of this file contains the ind2pop data (i.e. popu-
lation label/code/number) for the individual represented by line i of the () matrix files.
This file should contain a single column, with the same number of rows as individuals
in the input @ matrices (Table 2). Thus, blank lines are not tolerated.

Table 2: Example lines from the ind2pop file for the 1000 Genomes example dataset. In the
single column file, each line corresponds to an individual’s population assignment from the
1000 Genomes data (2426 individuals).

GBR
GBR
GBR
GBR

ITU

Table 3: Example lines from a pop_ order file. The first column contains population labels
from the ind2pop file; the top-to-bottom order of these labels will be the left-to-right order
in which the population are displayed in pong’s visualization. The second column contains
expanded, more descriptive population names which will be displayed in pong’s visualization
instead of the three-letter codes in the first column. The information in the second column is
optional.

YRI Yoruba in Ibadan, Nigeria
LWK Luhya in Webuye, Kenya

GBR British in England and Scotland
IBS Iberian Population in Spain
GIH Gujarati Indian from Houston, Texas

5.4 Population order and detailed names (optional)

Command line flags: -n filename / --pop_names filename

Besides ind2pop data, the user may provide an additional file specifying the left-to-right
order in which pong should display the populations using either of the command-line options
above. This file should have one population label/code/number per line that matches
labels/codes/numbers used in ind2pop data (see first column in Table 3). The top-to-bottom
order of population labels in this file will correspond with the left-to-right order of the
populations in pong’s visualization. pong will abort execution if the user provides population
order and labels information but not indZ2pop data.

Suppose the input ind2pop data are numbers or three-letter codes. In such cases, the
visualization may benefit from more descriptive population labels, and the user can add a
second column (tab-delimited) to the population order file containing population names (see
second column in Table 3). Space characters are allowed in these names. Use pop_order.txt
and pop_order_expandednames.txt in the example dataset for reference.

10

Note that users can group individuals by any covariate in indZ2pop data, such as language
spoken or geographic region.

5.5 Custom colors for visualization (optional)

Command line flags: -1 filename / --color_list filename

pong has a set of default colors used to denote membership in clusters (unless the maximum
K value across all input () matrices, K.y, is greater than 26). However, the user can provide
pong with a file containing a set of custom colors to use for visualization using either of the
above command-line options. This file must contain at least K, colors, with one color per
line; if the user provides more colors than K., only the first K., colors will be used in the
visualization.

Because pong’s visualization is web-based, colors can be provided in any format that is accepted
by Cascading Style Sheets (CSS) (see http://www.w3.org/Style/CSS/ for an overview). That
is, the file with colors can contain hexadecimal color codes (e.g., #££0000), RGB values
(e.g., rgb(255,0,0)), RGBA values (e.g., rgba(255,0,0, 0.4) for red with 40% opacity)
or HTML color strings (e.g., red). It is acceptable to mix these various color codes within a
single custom color file.

Note that pong’s visualization uses the color white to highlight differences among modes given
a fixed value of K. Users should therefore refrain from using white in any custom color file.

6 Additional input options

6.1 Specifying an alternate distance metric

Command line flag: --dist_metric [argument options are detailed in this section]

We have implemented several metrics to compute similarity between clusters in input @
matrices. We strongly recommend users use pong’s default metric, Jaccard similarity (7;
Equation 1) because we find that J is the most conservative metric with respect to grouping
runs into modes given a fixed value of K. Several other options are available for interested
investigators, detailed below.

The possible arguments to the command line flag --dist_metric are jaccard (this is the
default; Equation 1), sum_squared (Equation 2), percent (Equation 3), and G (Equation 4).

6.1.1 Jaccard similarity (default)
J has been derived from the Jaccard index used in set comparison. When using this metric,

the similarity value between two clusters does not increase if individuals have no membership
in either cluster. This pairwise similarity metric J is computed as follows: For a given pair

11

http://www.w3.org/Style/CSS/

of clusters {q.,,7.,}, let N* be the set of indices for which at least one of {7, ,,q.,} has a
nonzero entry; that is, N* = {i € [1, N] : ¢jo + ¢i» > 0}. Then,

S SN 1 ien+ (Qia — qiv)?
j(CZoa’Qob) =1 \l 2|N*| (1)

6.1.2 The sum of squared differences

Command line flag prototype: --dist_metric sum_squared

sum_squared measures pairwise similarity by computing the sum of the squared differences
between clusters. Given a pair of clusters {¢.,, .,}, and the total number of individuals N,
the sum_squared distance metric is computed as follows:

_q4.)2
ZiGN (QJZ\C; qzb) (2)

sum_squared(q,,, 7.,) =1 —

6.1.3 Average Manhattan distance

Command line flag prototype: —--dist_metric percent

percent calculates the absolute percent similarity between a pair of clusters, {¢. ., ¢.,}, with
the following equation:

ZiEN ‘(qia - %b)‘ (3)

(@ Tap) =1 —
percent(q. ., 7.;) N

6.1.4 G

Command line flag prototype: --dist_metric G

The G’ distance metric was defined by Jakobsson and Rosenberg [2007] as follows:

N D e e
G (Qoaaqob) =1 $ 2|N| (4)

6.1.5 Custom similarity metrics
pong’s implementation is designed such that users familiar with Python and NumPy can add

their own similarity metrics to the source code. Users interested in extending pong in this
manner should contact Aaron Behr.

12

mailto:aaron_behr@alumni.brown.edu?Subject=pong

6.2 Varying the threshold for determining modes

Command line flags: -s wvalue / --sim_threshold wvalue

pong relies sim_threshold (0.97 by default; can take on real values in [0,1]) when characterizing
multimodality for a fixed value of K. Given a value of K, pong uses algorithms for the
assignment problem [Manber, 1989, Kuhn, 1955, 1956, Munkres, 1957] to align each pair
of runs; here we use “align” to denote constructing a bipartite perfect matching between
clusters among a pair of runs. pong’s objective is to find the maximum-weight alignment for
each pairs of runs within a value of K. The average edge weight for each maximum-weight
alignment is stored to construct a pairwise similarity graph among all runs at that value of K.
In this pairwise similarity graph, each node is a run, and each edge denotes the average edge
weight of the maximum-weight alignment between the pair of runs it connects. By default,
an edge with weight less than sim_threshold= 0.97 is not added to the pairwise similarity
graph before modes are identified. Note that setting sim_threshold= 1 will force each run
to be in a separate mode; users may wish to set the threshold to 1 in order to visualize all
the input) matrices given to pong.

pong uses the package NetworkX [Hagberg et al., 2008] to find disjoint cliques within the
pairwise similarity graph; these disjoint cliques are the modes.

6.3 Using a greedy approach to identify modes

Command line flag: -g / --greedy

For a given value of K, pong defines modes by identifying disjoint cliques in the graph of
pairwise similarities between all pairs of runs. If a pair of runs has pairwise similarity less
than sim_threshold (Section 6.2), the edge connecting that pair of runs is not added to the
graph of pairwise similarities. This makes the graph sparse but does not ensure that cliques
will be disjoint; that is, there may be some runs that occur in multiple modes when pong

)

identifies cliques (using the package NetworkX; [Hagberg et al.,; 2008]).

If pong identifies cliques that are not disjoint, pong will prompt the user by default with a
choice: whether to continue with the greedy algorithm, or to exit and re-run with different
parameters (such as a higher sim_threshold). The greedy algorithm iteratively removes the
maximum clique from the graph of pairwise similarities, and is thus guaranteed to produce
disjoint cliques (modes). The command flag -g or —-greedy will simply force pong to use
this greedy approach, thereby freeing the user from waiting for pong’s prompt.

6.4 Server options

6.4.1 Disabling the server

Command line flag: --disable_server

By default, pong initializes a local Tornado web server instance on which to host the D3
interactive visualization. Users can disable pong’s server to run its algorithm without visualizing

13

results. The outputs that pong gives to the user beyond its visualization are detailed in
Section 7.

6.4.2 Specifying the Tornado server’s port

Command line flags: -p number / --port number

This command-line option allows a user to specify the port on which the server is locally
hosted. The default value is 4000.

7 pong’s output

Besides its visualization, pong provides the user with multiple types of output regarding modes
and alignment of) matrices. In Section 7.1, we detail command-line options the user can
use to customize pong’s output. In Section 7.2, we discuss output files produced by pong.

7.1 Output options

7.1.1 Specifying the output directory

Command line flags: -o directory_path / --output_dir directory_path

By default, pong makes an output directory called pong output datetime, where datetime is
the current system date and time. However, pong allows the user to specify the relative path
to the output directory where output files will be written using this flag. If the directory
doesn’t exist, the directory will be created. If the directory does exist, pong gives the user the
option to overwrite existing files or to abort.

7.1.2 Forced overwriting of an existing output directory

Command line flags: -f / --force

This flag will automatically overwrite the output directory, if it already exists.

7.2 Output files

pong generates results from its characterization of modes and alignment procedure that are
printed to a series of output files in the output directory (see Section 7.1.1). Two output files
are automatically reported when executing pong:

14

7.2.1 params__used.txt

The main parameters used to run pong are printed in the output file params used.txt. This
includes the filepath for the filemap, the similarity metric computed between clusters, the
similarity threshold used to determine multimodality, and the executed command line.

7.2.2 result__summary.txt

This file details the modes identified by pong. For each value of K, result summary.txt
contains the total number of iterations analyzed, runlDs for the representative runs of each
mode, and the runIDs of all the iterations in the each mode. If there are multiple modes
identified for a value of K, we report the Avg sim between modes, which indicates average
pairwise similarity across pairs of representative runs for each mode at that value of K.
(Note that “pairwise similarity” is defined as the average edge weight in the maximum-weight
alignment between a pair of runs.) If there is more than one) matrix in a mode, the value
of Avg sim within represents the average pairwise similarity across all pairs of runs within
that mode.

7.3 Additional output (-v flag)

Command line flags: -v / --verbose

Using pong’s verbose command-line flag will produce more detailed output files and additional
output directories, which we describe in Sections 7.3.1-7.3.5.

7.3.1 best alignment__across__K.txt

This file details the permutation of clusters that produces the maximum-weight alignment
across representative runs of major modes from K = kto K = k+1 (k = Kuin, - - -, Kmax — 1).
The user-provided runIDs (see the filemap in Section 5.2) of each major mode’s representative
run are printed in this file.

7.3.2 best alignment__per K.txt

This file details information from aligning) matrices within a fixed K value. For each K
value, this file lists the runID of each () matrix and the permutation of the matrix columns
that produces the maximum-weight alignment with the representative run of the major mode.
Representative runs for each value of K are indicated by an asterisk (*) on the right side of
the permutation.

15

7.3.3 cluster__matching results directory

Each file in this directory details the similarity metric value between each pair of clusters, as
well as the average pairwise similarity, for (7) pairs of () matrices within a value of K and
(77) pairs of () matrices that are representative runs of major modes across consecutive values
of K. Recall that the edge weights reported are determined by the dist_metric used (see
Section 6.1).

7.3.4 distruct__perm__files directory

If the user provides pong with a custom color file (Section 5.5) then, in this directory, pong
outputs a DISTRUCT [Rosenberg, 2004] color permutation file for each run, and annotates the
filenames of each mode’s representative run. These files can be used as input into DISTRUCT
[Rosenberg, 2004] to visualize @) matrices of particular runs (versus pong’s summary of modes,
which uses a single representative () matrix for each mode). For users familiar with the
command line, using the -v flag and DISTRUCT while disabling pong’s server (Section 6.4.1)
will enable the production of static graphics without viewing pong’s interactive visualization;
these options thus allow pong to be integrated into automated pipelines.

7.3.5 runs directory

pong elects representative runs for each mode it detects from the input set of () matrices. When
the -v / -verbose flag is used, pong then copies all () matrices designated as representative
runs to the runs directory.

8 pong’s D3.js-based Visualization

pong produces a visualization implemented in Javascript using the D3.js library. It is unique
in its interactive and dynamic graphical display of clustering inference output, providing
more information than existing approaches in a visually appealing and user-friendly way.
This section details the interactive aspects of the visualization.

8.1 Main visualization

Once pong’s algorithms have finished analyzing the dataset, the user will be prompted to open
a browser and connect to a specified localhost. After this connection is established, pong’s
back end will send information in JSON files to the front end to load a main visualization.
This main visualization displays the representative runs for the major mode at each value
of K as a barplot using Scalable Vector Graphics (SVG; see Figure 2). In our visualization,
as in DISTRUCT [Rosenberg, 2004], each individual is plotted as a stacked vertical line
of K colored line segments that represent the individual’s membership derived from each
cluster. Alongside each barplot, we display the corresponding value of K, the number of runs

16

classified in the major mode at each value of K, and the average pairwise similarity across
all pairs of runs in the major mode. If the user provided pong with ind2pop information (see
Section 5.3), population labels are displayed following all representative runs of major modes
and populations are separated by black lines in each barplot.

8.2 Interactive features in pong’s visualization
8.2.1 Detecting resized browser windows

The user may want to resize her browser window in order to view a larger visualization or to
fit a smaller screen. pong detects resizing events in the browser window, and prompts the user
to reload the browser in order to render the visualization to the browser’s new dimensions.

8.2.2 Tooltip displaying population information

Mousing over a specific population in any barplot in pong’s visualization displays a tooltip
which reports the population’s label (or covariate; Section 5.3), the number of samples in
the population, and the average membership in each cluster across all individuals in the
population (for clusters where population-level membership is > 0.5%).

8.2.3 Tooltip displaying runIDs represented by a barplot

For each barplot in pong’s main visualization and each mode observed at a given value of K
(Section 8.2.7), the number of runs represented by that barplot is displayed to the left of
each barplot as a fraction of the total number of runs for that value of K. Hovering over this
information will display a tooltip that reports which runs (by alphabetically sorted runlD)
are represented by the given barplot.

8.2.4 Highlighting specific clusters

The user can click on a single cluster within a barplot and highlight membership in that
cluster across all values of K (and all modes; see Section 8.2.7). The selected cluster will be
displayed in full color across all barplots, while other clusters will appear white. To undo the
selection, click anywhere within a barplot.

8.2.5 Highlighting specific populations

The user can click on any population label — or a set of populations by holding the SHIFT
key — to highlight their membership coefficients across all values of K (and all modes; see
Section 8.2.7). All selected populations are displayed in full color, while other populations
appear in dark grey. To undo the selection, simply click on any population label (do not hold
the SHIFT key).

17

8.2.6 Zooming into barplots

To zoom into a portion of a barplot, the user can mouse over the portion of interest and
scroll on his mouse. Zooming is centered around the location of the user’s cursor. Note
that it is possible to zoom in such a way that a population at the edge of the barplot may
be partially cut off. As a result, the population labels for populations at the edges of the
barplot may no longer be visible at the bottom of the main visualization. Additionally, the
population’s tooltip (Section 8.2.2) may appear off to the side of the visualization, since
tooltips are positioned at a population’s center (wherever it may be).

8.2.7 Visualizing multimodality for a given value of K

For any value of K that has more than one distinct mode, a button to the right of the major
mode barplot denotes the number of additional modes at that value of K. Clicking this
button opens a dialog box, where the top barplot displayed is the representative run of the
major mode at that value of K, followed by barplots representing each of the minor modes.
Next to each barplot in the dialog box, we display information regarding how many runs were
grouped into each mode and the runIDs of each mode’s representative run. Any interactive
action in the main visualization (see Sections 8.2.2-8.2.6) will automatically propagate to the
visualization in all dialog boxes.

The dialog box also has a checkbox on the top right corner that allows users to highlight
multimodality. When this box is checked, clusters in the minor modes’ representative runs
with similarity of at least sim_threshold (0.97 by default) to corresponding clusters in the
major mode are redrawn as white, while clusters that are less similar maintain their full
color to highlight the difference between each minor mode and the major mode. For some
datasets and values of K, all corresponding clusters across modes will appear very similar
while actually having similarity less than sim_threshold. In this case, the user is given
appropriate messaging in the dialog, with the recommendation of lowering sim_threshold in
pong’s command line to enable multimodality highlighting (Section 6.2). When multimodality
highlighting is turned on, the ability to click to highlight clusters is temporarily suspended.
Conversely, multimodality highlighting is disabled if a cluster has been clicked (indicated by
a change in cursor when the user’s mouse approaches the checkbox).

The dialog header also reports the average pairwise similarity across all pairs of representative
runs of modes. To close the dialog box, users can click the ‘x’ on the upper right side, or
click outside the dialog box.

8.3 Downloading barplots

Every barplot displayed by pong can be downloaded in multiple formats for use in manuscripts
and presentations: Portable Document Format (PDF; via print dialog), Portable Network
Graphics (PNG; via download), and Scalable Vector Graphics (SVG; via download). If
ind2pop data is given to pong (Section 5.3), population/covariate labels will also be displayed
in all downloaded visualizations.

18

Barplots can be downloaded individually by clicking the printer icon or download icon buttons
to the left of each barplot; this functionality exists in both the main visualization and in
each dialog box. All barplots in the main visualization (or the set of barplots representing
each mode in a dialog box) can be downloaded as a group using buttons at the bottom of
the browser window (or dialog box). The download/print feature mimics what the user sees
in the browser, so if a specific part of the barplots is highlighted (Sections 8.2.4-8.2.7), that
particular state of the visualization will be downloaded /printed.

Upon clicking a print button, pong initiates a print dialog in the browser that opens a new
tab where users can either print the barplot (with population/covariate labels, if those labels
exist) or choose the “Save to PDF” option to download the visualization of their input @
matrices; these downloaded PDFs are also editable in programs like Adobe Ilustrator. A
potential drawback to pong’s use of print dialogs for downloading PDFs is that pagination
of the visualization will occur based on the user’s print settings; this may cut off static
visualizations for datasets with many individuals (see “Troubleshooting” below).

We recommend downloading pong’s visualization as a PNG or editable SVG. Users can change
the image size of downloaded PNG in pong via a slider; depending on how the downloaded
figure is displayed, a larger size PNG may appear to have higher-resolution.

Troubleshooting:

e PDF: Users may need to disable pop-up blockers from localhost in order to
have the print dialogs pong initiates for printing/downloading barplots work properly.
Depending on the number of individuals in each ¢) matrix, the length of the population
labels, and the user’s settings for printing from a given browser, the user may find
that printed barplots are cut off in downloaded PDFs. There are two mechanisms by
which this issue can be alleviated: (%) setting the margins to none in the print dialog;
and/or (i) resizing the browser window and then refreshing so that pong renders the
visualization at a smaller dimension. If population labels are very large, then the labels
may need to be shortened to avoid cropping in the print dialog.

¢ PNG/SVG: When downloading all barplots in pong’s main visualization and/or
in a dialog box, if there are many values of K for which pong generated visualizations
and /or many individuals, Google Chrome and Safari browsers may fail to fully download
all barplots in the visualization. There are two workarounds: first, the Firefox web
browser does not have this problem; second, Safari users can still download individual
barplots.

9 Examples

This section details some examples of running pong, and its resulting visualization.

19

http://www.adobe.com/products/illustrator.html

@ [] pong_exec — Python — 86x28

pong
by &, Behr, K. Liu, G. Liu-Fang, and 5. Ramachandran
Yersion 1.8 (28153

Parsing input and generating cluster network groph
Matching clusters within each K ond finding representative runz
For K=2, there is 1 mode acrosz 18 runs.

For kK=3, there iz 1 mode acrosz 18 runs.

For k=4, there ore 2 modes across 18 runs.
For k=5, there is 1 mode across 18 runs.

For k=5, there ore 3 modes across 18 runs.
For K=7, there are 3 modes across 10 runs.
For K=5, there are 3 modes across 1A runs.
For K=9, there are 2 modes across 10 runs.

For k=18, there are 4 modes across 10 runs.

Matching clusters across K

Finding best alignment for all runs within and across K
match time: 12.63s

align time: B.ARs

total time: 17.12s

pong server is now running locally & listening on port 4808
Open wour web browser and navigate to http://localhost 4888 to see the visualizotion

Figure 1: Output from pong’s back end is displayed to the terminal as its algorithm runs.
These messages detail information regarding modes identified for each value of K, as well as
the time pong’s back end algorithms take for characterization of modes and alignment of ()
matrices. Once the back end has completed processing the input) matrices, pong prompts
the user to open a browser window and connect to a specified host to initiate pong’s front end
and display its visualization.

9.1 1000 Genomes phase 3 dataset, main visualization

As mentioned in Section 4, we provide an example dataset of ADMIXTURE runs based
on genotypes from the 1000 Genomes, phase 3 [Consortium, 2015], for pong users at the
Ramachandran Lab website.

To see pong’s visualization, run the following command in the example dataset directory
pong-example-data_1kG-p3:

pong -m pong filemap -i ind2pop.txt -n pop_order_expandednames.txt

Figure 1 shows messages displayed to the user’s terminal window when the above command
line is executed. All the specified files used as parameters in the above command line can be
found in the example dataset directory, pong-example-data_1kG-p3. The required filemap
(pong_filemap) is specified as input to pong. The particular command-line options used

above also specify the population label for each individual in the @-matrices (ind2pop.txt),
and the population order with expanded names (pop_order_expandednames.txt).

Once the user is prompted to open a web-browser and navigate to localhost:4000 (or the

20

http://brown.edu/Research/Ramachandran_Lab/projects/
http://brown.edu/Research/Ramachandran_Lab/projects/

user-specified port; see Section 6.4.2), the main visualization is rendered in the browser
window (Figure 2).

9.2 Chicken dataset from Rosenberg et al. [2001], visualizing
modes

We also ran pong on 100 @) matrices produced from running ADMIXTURE [Alexander et al.,
2009] on 20 breeds of chickens at a single K vaue, K=19. Figure 3 shows pong’s dialog box
displaying the major mode, and some minor modes, for this dataset. pong identifies 28 modes
in 15.91 minutes.

References

David H. Alexander, John Novembre, and Kenneth Lange. Fast model-based estimation of
ancestry in unrelated individuals. Genome Research, 19(9):1655-1664, 20009.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3(4-5):993-1022, 2003.

The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526(7571):68-74, 2015.

Daniel Falush, Matthew Stephens, and Jonathan K Pritchard. Inference of population
structure using multilocus genotype data: linked loci and correlated allele frequencies.
Genetics, 164(4):1567-87, 2003.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11-15, Pasadena, CA USA, 2008.

Melissa J. Hubisz, Daniel Falush, Matthew Stephens, and Jonathan K. Pritchard. Inferring
weak population structure with the assistance of sample group information. Molecular
Ecology Resources, 9(5):1322-1332, 2009. doi: 10.1111/j.1755-0998.2009.02591.x.

Mattias Jakobsson and Noah a Rosenberg. CLUMPP: a cluster matching and permutation
program for dealing with label switching and multimodality in analysis of population
structure. Bioinformatics (Oxford, England), 23(14):1801-6, July 2007.

A Jasra, CC Holmes, and DA Stephens. Markov Chain Monte Carlo methods and the label
switching problem in Bayesian Mixture Modeling. Statistical Science, 20(1):50-67, 2005.

Naama M Kopelman, Jonathan Mayzel, Mattias Jakobsson, Noah A Rosenberg, and Itay
Mayrose. C LUMPAK : a program for identifying clustering modes and packaging population
structure inferences across K. Molecular Ecology Resources, pages doi: 10.1111/1755—
0998.12387, 2015.

21

Harold W Kuhn. The Hungarian Method for the assignment problem. Naval Research
Logistics Quarterly, 2:83-97, 1955.

Harold W Kuhn. Variants of the Hungarian method for assignment problems. Naval Research
Logistics Quarterly, 3:253-258, 1956.

Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.
ISBN 0-201-12037-2.

James Munkres. Algorithms for the Assignment and Transportation Problems. Journal of
the Society of Industrial and Applied Mathematics, 5(1):32-38, 1957.

J K Pritchard, M Stephens, and P Donnelly. Inference of population structure using multilocus
genotype data. Genetics, 155(2):945-959, 2000.

Anil Raj, Matthew Stephens, and Jonathan K Pritchard. fastSTRUCTURE: Variational
Inference of Population Structure in Large SNP Data Sets. Genetics, 197(2):573-589, 2014.

Noah a. Rosenberg. DISTRUCT: A program for the graphical display of population structure.
Molecular Ecology Notes, 4(1):137-138, 2004.

Noah A Rosenberg, Terry Burke, Kari Elo, Marcus W Feldman, Paul J Freidlin, Martien
A M Groenen, Jossi Hillel, Asko Méki-Tanila, Michele Tixier-Boichard, Alain Vignal, Klaus
Wimmers, and Steffen Weigend. Empirical evaluation of genetic clustering methods using
multilocus genotypes from 20 chicken breeds. Genetics, 159(2):699-713, 2001.

M Stephens. Dealing with label switching in mixture models. J. R. Statist. Soc. Series B, 62
(4):795-809, 2000.

22

Figure 2: Screenshot of pong’s main visualization of population structure in the 1000 Genomes, based on
our application of ADMIXTURE [Alexander et al., 2009] to these data; in order to fit this image on one page,
we cropped the top of the browser window (K = 2,...,5). Each barplot depicts the representative run of
the major at each value of K. Avg. similarity reports the average similarity between the representative
run of a given major mode and all other runs in the major mode at that value of K. The number of runs in
the major mode is displayed as a fraction to the left of each barplot. Clicking the printer icon to the left
of a barplot initiates a print dialog for the chosen individual barplot in a separate web page. This allows
the user to print (or save as PDF) any of the barplots in the visualization. For all K > 6 (and K = 4, not
shown here), a blue button appears to the right of the barplot, displaying the the number of additional modes
pong detected at that value of K. Clicking on this will prompt a dialog box to open displaying all the minor
modes at the given value of K. Population labels appear below the last barplot; the button labeled “Print all
barplots” will print (or save to PDF) the full main visualization.

[NoN [Hpong | Trello % /| pong visualization x

€ - C [localhost:4000 ! -

Avg pairwise similarity: 0.999

K=6
5/10 runs
a

Avg pairwise similarity: 0.999

K=7
5/10 runs

]

Avg pairwise similarity: 0.999

K=8
B8/10 runs

-]

Avg pairwise similarity: 0.997

K=9
9110 runs

Avg pairwise similarity: 1

K=10

410 runs

e

Print all barplots

23

Figure 3: pong’s dialog box displaying major and 6 of 27 minor modes at K = 19, based on clustering
inference output using data from chickens (analyzed initially by Rosenberg et al. [2001]; see also Figure 1
of Jakobsson and Rosenberg [2007]). pong will display all modes for a value of K if its back end algorithm
identifies more than one mode at that value of K; here our screenshot only shows 6 minor modes due to size
constraints. We have checked the Check to highlight multimodality box; thus, clusters in each minor
mode that are similar to the corresponding cluster in major mode are depicted in white, while maintaining
full color for the dissimilar clusters when comparing each minor mode to the major mode. Printer icons also
appear for each barplot in the dialog box; if barplots are printed, they will be printed as seen (in this case,
with multimodality highlighted).

Clustering modes, K=19

Avg pairwise similarity among modes = 0.933

Check to highlight multimodality:
majormode Avg palrwise similarity:0.990

r2
represents
31/100 runs

s

Avg pairwise similarity:0.986

r20
represents
171100 runs

e

Avg pairwise similarity:0.998

r11
represents
8100 runs

s

Avg pairwise similarity:0.981

r25
represents
5/100 runs

s

Avg pairwise similarity:0.998

represents
4100 runs

e

Avg pairwise similarity:0.998

7
represents
3100 runs

e

Avg pairwise similarity:0.997

represents
3100 runs

s

24

	Introduction
	Citation information
	Overview of pong's implementation

	New features in pong version 1.4.9
	Installing pong
	Linux-specific tips
	Mac-specific tips

	Running pong with example data
	Input to pong
	Clustering output (required)
	filemap file (required)
	Population labels (optional, but recommended)
	Population order and detailed names (optional)
	Custom colors for visualization (optional)

	Additional input options
	Specifying an alternate distance metric
	Jaccard similarity (default)
	The sum of squared differences
	Average Manhattan distance
	G'
	Custom similarity metrics

	Varying the threshold for determining modes
	Using a greedy approach to identify modes
	Server options
	Disabling the server
	Specifying the Tornado server's port

	pong's output
	Output options
	Specifying the output directory
	Forced overwriting of an existing output directory

	Output files
	params_used.txt
	result_summary.txt

	Additional output (-v flag)
	best_alignment_across_K.txt
	best_alignment_per_K.txt
	cluster_matching_results directory
	distruct_perm_files directory
	runs directory

	pong's D3.js-based Visualization
	Main visualization
	Interactive features in pong's visualization
	Detecting resized browser windows
	Tooltip displaying population information
	Tooltip displaying runIDs represented by a barplot
	Highlighting specific clusters
	Highlighting specific populations
	Zooming into barplots
	Visualizing multimodality for a given value of K

	Downloading barplots

	Examples
	1000 Genomes phase 3 dataset, main visualization
	Chicken dataset from Rosenberg2001, visualizing modes

