Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:7bb11892490e1dc1b1ff3be1d93f489dadb3e857
  • Code
  • Branches (1)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • 8306d99
  • /
  • R
  • /
  • tryADMM_cholcache.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:060d0ec6963eb09e7922ebd7a456213f7d04b1fd
directory badge Iframe embedding
swh:1:dir:601afeb022bee3e7471f0b8dcff84a62082afdb4
revision badge
swh:1:rev:c5b693d0a66e83c9387433b33c0eab481bd4a763
snapshot badge
swh:1:snp:7bb11892490e1dc1b1ff3be1d93f489dadb3e857
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: c5b693d0a66e83c9387433b33c0eab481bd4a763 authored by Wesley Tansey on 08 May 2020, 15:42:20 UTC
Fixed bug in easy that created too large a support for the alternative distribution
Tip revision: c5b693d
tryADMM_cholcache.R
library(genlasso)
library(FDRreg)
library(locfdr)
source("ADMMutils.R")
source("ADMM_cholcache.R")

n = 128
d = n^2
D = genlasso::getD2dSparse(n,n) # appears to fastcount on rows

# Construct a true blocky 2D image
beta_true = matrix(-10, nrow=n, ncol=n)
block1_i = 10:25
block1_j = 10:25
beta_true[block1_i, block1_j] = 0
block2_i = 40:50
block2_j = 50:60
beta_true[block2_i, block2_j] = 2

# Plot the truth
mybreaks = seq(0,1,length=21)
mycols = grey(seq(1,0,length=20)^0.5)
filled.contour(1:n, 1:n, ilogit(beta_true), levels=mybreaks, col=mycols)

beta_true_vec = as.numeric(beta_true)
w_true = ilogit(beta_true_vec)
gamma_true = rbinom(d, 1, w_true)
z = rnorm(d)
z[gamma_true == 1] = rnorm(sum(gamma_true), 0, 3)
image(1:128, 1:128, matrix(z, nrow=n, ncol=n), col=mycols, xlab='', ylab='')


# Pre-compute a sparse Cholesky factorization: L^t L = D^t D + I
# Use a fill-reducing permutation to keep L as sparse as possible
chol_factor = Matrix::Cholesky(Matrix::crossprod(D) + Matrix::Diagonal(d), perm=TRUE, super=FALSE)
#image(chol_factor)

# Quick timing test
arg = runif(ncol(chol_factor), -1,1)
system.time(replicate(100, (Matrix::solve(chol_factor, arg))))

# EM
beta_hat = rep(0,d)
f0 = dnorm(z,0,1)
f1 = dnorm(z,0,3)

#####
#### Russ data example
#####

# Load in a single slice from Russ Poldrack's data
Z_scores = read.csv("../data/zscores_russdata_hslice37.csv")
Z_scores = as.matrix(Z_scores)

par(mar=c(4,4,3,1))
# Color scale
mybreaks = c(seq(0,5, length=21), 20)
mycols = c(grey(seq(1,.3,length=20)^0.5), 'red')
image(1:nrow(Z_scores), 1:ncol(Z_scores), abs(Z_scores), breaks=mybreaks, col=mycols,
	main="Raw z scores from a single horizontal section", xlab='x', ylab='y',
	cex.main=0.9,
	xlim=c(20,110), ylim=c(0, 105), las=1)


# Very high z scores
image(1:nrow(Z_scores), 1:ncol(Z_scores), 0+{abs(Z_scores) > 8}, breaks=c(-0.5,0.5,1.5), col=c('white', 'black'),
	main="Findings under FDR control", xlab='x', ylab='y',
	cex.main=0.8,
	xlim=c(20,110), ylim=c(0, 105), las=1)


# Very high z scores
image(1:nrow(Z_scores), 1:ncol(Z_scores), 0+{abs(Z_scores) > 8}, breaks=c(-0.5,0.5,1.5), col=c('white', 'black'),
	main="Findings under FDR control", xlab='x', ylab='y',
	cex.main=0.8,
	xlim=c(20,110), ylim=c(0, 105), las=1)




x_length = 128
y_length = 128
xy_grid = expand.grid(1:x_length, 1:y_length)

z_full = as.numeric(Z_scores)
brain_area = which(z_full != 0)
z = z_full[brain_area]

d = length(brain_area)

# Sanity check on the area we think is the brain
plot(xy_grid[brain_area,], pch=15, cex=0.6)

# Get the oriented incidence matrix for the retained nodes
D = genlasso::getD2dSparse(x_length,y_length) # appears to fastcount on rows
D = D[,brain_area]
scrub_edges = which(rowSums(abs(D)) != 2)
D = D[-scrub_edges,]
chol_factor = Matrix::Cholesky(Matrix::crossprod(D) + Matrix::Diagonal(d), perm=TRUE, super=FALSE)


# Fit empirical null and nonparametric alternative

# e1 = efron(z, nulltype='empirical')

e2 = locfdr(z)
mu0 = e2$fp0[3,1]
sig0 = e2$fp0[3,2] 
pr1 = prfdr(z, mu0=mu0, sig0=sig0)
f0 = pr1$f0_z
f1 = pr1$f1_z

par(mar=c(2,4,3,1))
hist(z, 200, prob=TRUE, axes=FALSE,
	main='z scores from fMRI experiment', xlab='',
	col='lightgrey', border='grey', xlim=c(-6,6), las=1)
curve(0.745231088*dnorm(x), add=TRUE, lty='dotted')
curve(0.955349473*dnorm(x,mu0,sig0), add=TRUE)
legend('topright', legend=c('Theoretical Null: 0.75*N(0, 1)', 'Empirical Null: 0.96*N(-0.1, 1.3)'),
	cex=0.6, lty=c('dotted', 'solid'), bty='n')
axis(2, las=1, tick=FALSE)
axis(1, at=-5:5, las=1, tick=FALSE, line=-1)
mtext('z', side=1, line=1)

lines(pr1$x_grid, pr1$f1_grid, lty='dashed', col='grey')

# EM
beta_hat = rep(0,d)

# Initialization
fl0 = list(x = rep(mean(z), d), # likelihood term
			z = rep(0, d), # slack variable for likelihood
			r = rep(0, nrow(D)), # penalty term
			s = rep(0, nrow(D)), # slack variable for penalty
			u_dual = rep(0,length(z)), # scaled dual variable for constraint x = z
			t_dual = rep(0,nrow(D))) # scaled dual variable for constraint r = s
		

lambda = .38
rel_tol = 1e-6
travel = 1
prior_prob = ilogit(beta_hat)
old_objective = sum(-log(prior_prob*f1 + (1-prior_prob)*f0)) + lambda * sum(abs(fl0$r))
converged = FALSE
while(!converged) {
	# E step
	m1 = prior_prob*f1
	m0 = (1-prior_prob)*f0
	post_prob = m1/(m1+m0)
	
	# Partial M step: one ADMM iteration, analogous to a single Newton iteration
	weights = prior_prob*(1-prior_prob)
	y = beta_hat - (prior_prob - post_prob)/weights
	fl0 = fit_graphfusedlasso_cholcache(y, lambda=lambda, D=D, chol_factor=chol_factor, weights=weights,
		initial_values = fl0, rel_tol = rel_tol, alpha=1.8, adaptive=FALSE)
	beta_hat = fl0$x
	prior_prob = ilogit(beta_hat)
	
	# Check relative convergence
	new_objective = sum(-log(prior_prob*f1 + (1-prior_prob)*f0)) + lambda * sum(abs(fl0$r))
	travel = abs(new_objective - old_objective)
	old_objective = new_objective
	converged = {travel/(old_objective + rel_tol) < rel_tol}
}


Pi_smoothed = matrix(0, nrow=x_length, ncol=y_length)
Pi_smoothed[brain_area] = prior_prob

Z_empirical = (abs(Z_scores-mu0))/sig0
Z_empirical[Z_scores == 0] = 0

par(mfrow=c(2,2), mar=c(1,1,3,1))
# Color scale
mybreaks = c(seq(0,5, length=21), 20)
mycols = c(grey(seq(0.98,.1,length=21)^0.5))
image(1:nrow(Z_scores), 1:ncol(Z_scores), Z_empirical, breaks=mybreaks, col=mycols,
	main="Raw z scores from a single horizontal section", xlab='x', ylab='y',
	cex.main=0.8, axes=FALSE,
	xlim=c(110,20), ylim=c(0, 105), las=1)


# Compare with BH
is_finding_BH = BenjaminiHochberg(z, 0.05)
findings_matrixBH = matrix(0, nrow=x_length, ncol=y_length)
findings_matrixBH[brain_area[which(is_finding_BH==1)]] = 1
image(1:nrow(Z_scores), 1:ncol(Z_scores), findings_matrixBH, breaks=c(-0.5,0.5,1.5), col=c('white', 'black'),
	main="Findings using the Benjamini-Hochberg method", xlab='x', ylab='y',
	cex.main=0.8, axes=FALSE,
	xlim=c(110,20), ylim=c(0, 105), las=1)




mybreaks = c(0, seq(0.3,0.75,length=19), 1)
n_levels = 10
mybreaks = c(0,seq(1e-5,1, length=n_levels))
mycols = grey(c(1,seq(0.97,0.1,length=n_levels-1)))
image(1:nrow(Z_scores), 1:ncol(Z_scores), Pi_smoothed, breaks=mybreaks, col=mycols,
	main="Estimated local fraction of signals", xlab='x', ylab='y',
	cex.main=0.8, axes=FALSE,
	xlim=c(110,20), ylim=c(0, 105), las=1)


local_fdr = (1-prior_prob)*pr1$f0_z
local_fdr = local_fdr / {local_fdr + prior_prob*pr1$f1_z}
is_finding = {getFDR(1-local_fdr)$FDR < 0.05}
findings_matrix = matrix(0, nrow=x_length, ncol=y_length)
findings_matrix[brain_area[is_finding]] = 1

image(1:nrow(Z_scores), 1:ncol(Z_scores), findings_matrix, breaks=c(-0.5,0.5,1.5), col=c('white', 'black'),
	main="Findings using FDR smoothing", xlab='x', ylab='y',
	cex.main=0.8, axes=FALSE,
	xlim=c(110,20), ylim=c(0, 105), las=1)





write.csv(Z_empirical, file='Z_empiricalnull.csv', row.names=FALSE)
write.csv(Pi_smoothed, file='Pi_smoothed.csv', row.names=FALSE)
write.csv(findings_matrix, file='findings_matrix.csv', row.names=FALSE)
write.csv(findings_matrixBH, file='findings_matrix_BH.csv', row.names=FALSE)


par(mar=c(3,3,3,1))
filled.contour(1:n, 1:n, ilogit(beta_true), levels=mybreaks, col=mycols, main="True prior probability of signal")

zlevels = c(seq(0,2,length=25), max(z))
zcolors = c(grey(seq(1,0,length=24)^0.75), 'red')
image(1:n, 1:n, matrix(abs(z), nrow=n, ncol=n),
	breaks=zlevels, col=zcolors,
	main="Observed z score")

filled.contour(1:n, 1:n, matrix(prior_prob, nrow=n, ncol=n), levels=mybreaks, col=mycols, main="Estimated prior probability")

filled.contour(1:n, 1:n, matrix(beta_hat, nrow=n, ncol=n),  col=mycols, main="Estimated prior probability")


Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top