\name{polyApprox} \alias{polyApprox} \title{ Polynomial Approximation } \description{ Generate a polynomial approximation. } \usage{ polyApprox(f, a, b, n, ...) } \arguments{ \item{f}{function to be approximated.} \item{a, b}{end points of the interval.} \item{n}{degree of the polynomial.} \item{...}{further variables for function \code{f}.} } \details{ Uses the Chebyshev coefficients to derive polynomial coefficients. } \value{ List with three components: the approximating polynomial, a function evaluating this polynomial, and the estimated precision over the given interval. } \references{ Carothers, N. L. (1998). A Short Course on Approximation Theory. Bowling Green State University, URL: \url{http://personal.bgsu.edu/~carother/Approx.html}. } \author{ HwB email: } \note{ The Chebyshev approximation is optimal in the sense of the \eqn{L^1} norm, but not as a solution of the \emph{minimax} problem; for this, an application of the Remez algorithm is needed. } \seealso{ \code{\link{chebApprox}}, \code{\link{polyfit}} } \examples{ ## Example # Polynomial approximation for sin polyApprox(sin, -pi, pi, 9) # $p # [1] 0.06549943 0.00000000 -0.58518036 0.00000000 2.54520983 # [7] 0.00000000 -5.16709776 0.00000000 3.14158037 0.00000000 # # $f # function (x) # polyval(r, x) # # # $estim.prec # [1] 1.151207e-05 \dontrun{ f <- polyApprox(sin, -pi, pi, 9)$f x <- seq(-pi, pi, length.out = 100) y <- sin(x) - f(x) plot(x, y, type = "l", col = "blue") grid()} } \keyword{ math }