Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 8a09c73
  • /
  • properties.Rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:063a568dfb453292e81467c635b71bcc6d05ec36
directory badge Iframe embedding
swh:1:dir:8a09c739a8f00d9b1bf0ca569854956c68760562
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
properties.Rd
\name{p.exp}
\alias{p.exp}
\alias{p.lin}
\alias{p.sig}

\title{
  Common Properties with Distance,to be used with setup.prop.1D
}

\description{
  Functions that define an y-property as a function of the one-dimensional
  x-coordinate. These routines can be used to specify properties and parameters
  as a function of distance, e.g. depth in the water column or the sediment.

  They make a transition from an upper (or upstream) zone, with value
  \code{y.0} to a lower zone with a value \code{y.inf}.

  Particularly useful in combination with \link{setup.prop.1D}
  
  \itemize{
    \item \code{p.exp}: exponentially decreasing transition 
      \deqn{
         y = y_{\inf} + (y_0-y_{\inf}) \exp(-\max(0,x-x_0)/x_a)
      }{
      y=y0+(y0-yinf)*exp(-max(0,(x-x0))/xa}

    \item \code{p.lin}: linearly decreasing transition 
      \deqn{
         y = y_0;  y = y_0 - (y_0-y_{inf})*(x-x_L)/x_{att}) ;
         y = y_{inf}
        }{y=y0 ; y=y0-(y0-yinf)(x-xl)/xatt ; y = yinf}
        
    for \eqn{0 \leq x \leq x_L}, \eqn{x_L \leq x \leq x_L + x_{att}} and
     \eqn{(x \geq x_L + x.att )} respectively.
     
    \item \code{p.sig}: sigmoidal decreasing transition
      \deqn{
         y = y_{inf} + (y_0-y_{inf})\frac{\exp(-(x-x_L)/
         (0.25 x_{att}))}{(1+\exp(-(x-x_L))/(0.25 x_{att}))})
        }{y=yinf+(y0-yinf)exp(-(x-xL)/(0.25xatt)) /
        (1+exp(-(x-xL)/(0.25xatt)))}
  }
}

\usage{
p.exp(x, y.0=1, y.inf=0.5, x.L=0, x.att=1)
p.lin(x, y.0=1, y.inf=0.5, x.L=0, x.att=1)
p.sig(x, y.0=1, y.inf=0.5, x.L=0, x.att=1)
}

\arguments{
  \item{x }{the x-values for which the property has to be calculated.
  }
  \item{y.0 }{the y-value at the origin 
  }
  \item{y.inf }{the y-value at infinity 
  }
  \item{x.L }{the x-coordinate where the transition zone starts;
    for \code{x <= x.0}, the value will be equal
    to \code{y.0}. For \code{x >> x.L + x.att} the value will
    tend to \code{y.inf}
  }
  \item{x.att }{attenuation coefficient in exponential decrease,
    or the size of the transition zone in the linear and sigmoid decrease
  }
}

\value{
  the property value, estimated for each x-value.
}

\details{
  For \code{p.lin}, the width of the transition zone equals \code{x.att} and
  the depth where the transition zone starts is \code{x.L}.
  
  For \code{p.sig}, \code{x.L} is located the middle of the smooth transition zone of approaximate width \code{x.att}.  
  
  For \code{p.exp}, there is no clearly demarcated transition zone;
  there is an abrupt change at \code{x.L} after which the property
  exponentially changes from \code{y.0} towards \code{y.L} with attenuation
  coefficient \code{x.att}; the larger \code{x.att} the less steep the change.

}
\author{
  Filip Meysman <f.meysman@nioo.knaw.nl>,
  Karline Soetaert <k.soetaert@nioo.knaw.nl>
}

\examples{

 x<- seq(0,5,len=100)
 plot(x, p.exp(x,x.L=2),xlab="x.coordinate", ylab="y value",ylim=c(0,1))
 lines(x, p.lin(x,x.L=2),col="blue")
 lines(x, p.sig(x,x.L=2),col="red")
}
 
\keyword{utilities}


Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top