\name{trigApprox} \alias{trigApprox} \title{ Trigonometric Approximation } \description{ Computes the trigonometric series. } \usage{ trigApprox(t, x, m) } \arguments{ \item{t}{vector of points at which to compute the values of the trigonometric approximation.} \item{x}{data from \code{t=0} to \code{t=2*(n-1)*pi/n}.} \item{m}{degree of trigonometric regression.} } \details{ Calls \code{trigPoly} to get the trigonometric coefficients and then sums the finite series. } \value{ Vector of values the same length as \code{t}. } \note{ TODO: Return an approximating function instead. } \seealso{ \code{\link{trigPoly}} } \examples{ \dontrun{ ## Example: Gauss' Pallas data (1801) asc <- seq(0, 330, by = 30) dec <- c(408, 89, -66, 10, 338, 807, 1238, 1511, 1583, 1462, 1183, 804) plot(2*pi*asc/360, dec, pch = "+", col = "red", xlim = c(0, 2*pi), ylim = c(-500, 2000), xlab = "Ascension [radians]", ylab = "Declination [minutes]", main = "Gauss' Pallas Data") grid() points(2*pi*asc/360, dec, pch = "o", col = "red") ts <- seq(0, 2*pi, len = 100) xs <- trigApprox(ts ,dec, 1) lines(ts, xs, col = "black") xs <- trigApprox(ts ,dec, 2) lines(ts, xs, col = "blue") legend(3, 0, c("Trig. Regression of degree 1", "Trig. Regression of degree 2", "Astronomical position"), col = c("black", "blue", "red"), lty = c(1,1,0), pch = c("", "", "+"))} } \keyword{ math }