\name{parallel} \alias{parallel} \title{ Parallel Analysis of a Correlation or Covariance Matrix} \description{ This function gives the distribution of the eigenvalues of correlation or a covariance matrices of random uncorrelated standardized normal variables. The mean and a selected quantile of this distribution are returned. } \usage{ parallel(subject = 100, var = 10, rep = 100, cent = 0.05, quantile = cent, model = "components", sd = diag(1,var), ...) } \arguments{ \item{subject}{ numeric: nmber of subjects (default is 100)} \item{var}{ numeric: number of variables (default is 10) } \item{rep}{ numeric: number of replications of the correlation matrix (default is 100)} \item{cent}{ depreciated numeric (use quantile instead): quantile of the distribution on which the decision is made (default is 0.05)} \item{quantile}{ numeric: quantile of the distribution on which the decision is made (default is 0.05)} \item{model}{ character: \code{"components"} or \code{"factors"} } \item{sd}{ numeric: vector of standard deviations of the simulated variables (for a parallel analysis on a covariance matrix) } \item{...}{ variable: other parameters for the \code{"mvrnorm"}, \code{corr} or \code{cov} functions } } \details{ Note that if the decision is based on a quantile value rather than on the mean, care must be taken with the number of replications (\code{rep}). In fact, the smaller the quantile (\code{cent}), the bigger the number of necessary replications. } \value{ \item{eigen}{ Data frame consisting of the mean and the quantile of the eigenvalues distribution } \item{eigen$mevpea}{ Mean of the eigenvalues distribution} \item{eigen$sevpea}{ Standard deviation of the eigenvalues distribution} \item{eigen$qevpea}{ quantile of the eigenvalues distribution} \item{eigen$sqevpea}{ Standard error of the quantile of the eigenvalues distribution} \item{subject}{ Number of subjects} \item{variables}{ Number of variables} \item{centile}{ Selected quantile} Otherwise, returns a summary of the parallel analysis. } \references{ Drasgow, F. and Lissak, R. (1983) Modified parallel analysis: a procedure for examining the latent dimensionality of dichotomously scored item responses. \emph{Journal of Applied Psychology, 68}(3), 363-373. Hoyle, R. H. and Duvall, J. L. (2004). Determining the number of factors in exploratory and confirmatory factor analysis. In D. Kaplan (Ed.): \emph{The Sage handbook of quantitative methodology for the social sciences}. Thousand Oaks, CA: Sage. Horn, J. L. (1965). A rationale and test of the number of factors in factor analysis. \emph{Psychometrika, 30}, 179-185. } \author{ Gilles Raiche \cr Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr Universite du Quebec a Montreal\cr \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/} } \seealso{ \code{\link{plotuScree}}, \code{\link{nScree}}, \code{\link{plotnScree}}, \code{\link{plotParallel}} } \examples{ ## SIMPLE EXAMPLE OF A PARALLEL ANALYSIS ## OF A CORRELATION MATRIX WITH ITS PLOT data(dFactors) eig <- dFactors$Raiche$eigenvalues subject <- dFactors$Raiche$nsubjects var <- length(eig) rep <- 100 quantile <- 0.95 results <- parallel(subject, var, rep, quantile) results ## IF THE DECISION IS BASED ON THE CENTILE USE qevpea INSTEAD ## OF mevpea ON THE FIRST LINE OF THE FOLLOWING CALL plotuScree(x = eig, main = "Parallel Analysis" ) lines(1:var, results$eigen$qevpea, type="b", col="green" ) ## ANOTHER SOLUTION IS SIMPLY TO plotParallel(results) } \keyword{ multivariate }