Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:07d138c36fdfcdc5ac73aec81decef76afb686e0
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
from numba import njit
from numpy import empty
from math import sqrt
from random import uniform

@njit
def vec2(x,y):
	'''Convert two numbers to a 2D numpy array '''
	v = empty((2,),dtype=float)
	v[0] = x
	v[1] = y
	return v

@njit
def vec3(x,y,z):
	'''Convert three numbers to a 2D numpy array '''
	v = empty((3,),dtype=float)
	v[0] = x
	v[1] = y
	v[2] = z
	return v

@njit
def vec4(x,y,z,w):
	'''Convert four numbers to a 2D numpy array '''
	v = empty((4,),dtype=float)
	v[0] = x
	v[1] = y
	v[2] = z
	v[3] = w
	return v

# @njit	
# def V(x, inv_noise_scale, offset):
# 	''' V returns a curl noise vector field'''
# 	p = empty(3)
# 	p[0:2] = x*inv_noise_scale+offset
# 	return scnoise_curl(p)[0:2]

@njit	
def V(x, inv_noise_scale, offset, noise_grad):
	''' V returns a curl noise vector field'''
	p = empty(3)
	p[0:2] = x*inv_noise_scale+offset
	p[2] = 98.45
	g = noise_grad(p)
	gh = vec2(-g[1], g[0])
	return gh

@njit
def Euler(x, dt, inv_noise_scale, offset, noise_grad):
	'''Perform one Euler step of length dt from x along the curl noise vector field'''
	return x + dt * V(x, inv_noise_scale, offset, noise_grad)

@njit
def RK4(x, dt, inv_noise_scale, offset, noise_grad):
	'''Perform one Runge-Kutta 4th order step of length dt from x along the curl noise vector field'''
	a = dt * V(x, inv_noise_scale, offset, noise_grad)
	b = dt * V(x+a/2, inv_noise_scale, offset, noise_grad)
	c = dt * V(x+b/2, inv_noise_scale, offset, noise_grad)
	d = dt * V(x+c, inv_noise_scale, offset, noise_grad)
	return x + (a+2*b+2*c+d)/6



@njit
def rand_vec2():
	'''Convert two numbers to a 2D numpy array '''
	v = empty((2,),dtype=float)
	v[0] = uniform(0,1)
	v[1] = uniform(0,1)
	return v

## UNUSED

@njit
def smoothstep(a,b,x):
	t = x-a/b-a
	if t < 0: return 0
	if 1 < t: return 1
	return 3*t**2-2*t**3

@njit
def Rand(x, dt, inv_noise_scale, offset):
	'''Perform a step of length dt from x in a random direction.'''
	return x + dt * rand_vec2() 

@njit
def NoiseV(x, dt, inv_noise_scale, offset, noise_grad):
	'''Perform a step of length dt from x in a noise vector direction.'''
	p = vec3(0,0,offset)
	p[0:2] = x*inv_noise_scale
	g = noise_grad(p)
	return x + dt * g[0:2]

def L2_star_disc(P):
	n = P.shape[0]
	l2sd = (1/3)**2 
	l2sd -= (2/n) * sum([ 0.25 * (1 - x[0]**2) * (1 - x[1]**2) for x in P])
	s = 0
	for xi in P:
		for xk in P:
			s += (1-max(xi[0], xk[0]))*(1-max(xi[1], xk[1]))
	l2sd += s/(n**2)
	return sqrt(l2sd)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API