Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/pyrosilesl97/POU-IV_analysis
19 May 2025, 19:24:41 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • 463178242d112edab7094c12e093dd780177885b
    No releases to show
  • 628c2c4
  • /
  • Data_analysis.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:085857125b12b521e9c03d0895ce331b1f0cf4d5
origin badgedirectory badge Iframe embedding
swh:1:dir:628c2c4ada964d41067b1bbbd03655394eff51f9
origin badgerevision badge
swh:1:rev:463178242d112edab7094c12e093dd780177885b
origin badgesnapshot badge
swh:1:snp:8bb7c3e8ef4d02b0abdcf8f68ffa32f50e3db2d1
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 463178242d112edab7094c12e093dd780177885b authored by Pablo Yamild Rosiles Loeza on 30 September 2021, 00:43:31 UTC
Update readme and license
Tip revision: 4631782
Data_analysis.R
#MIT License

#Copyright (c) 2021 Pablo Yamild Rosiles Loeza

#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:

 # The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.

#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.



## wget ftp://ftp.ensemblgenomes.org/pub/metazoa/release-51/fasta/nematostella_vectensis/dna/Nematostella_vectensis.ASM20922v1.dna.toplevel.fa.gz


## wget https://figshare.com/ndownloader/articles/807696/versions/2

## unzip 2


## cd data

## # POU mutants data

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/003/ERR3809533/ERR3809533.fastq.gz

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/002/ERR3809532/ERR3809532.fastq.gz

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/004/ERR3809534/ERR3809534.fastq.gz

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/005/ERR3809535/ERR3809535.fastq.gz

##
## # POU wild type data

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/006/ERR3809536/ERR3809536.fastq.gz

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/007/ERR3809537/ERR3809537.fastq.gz

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/008/ERR3809538/ERR3809538.fastq.gz

## wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR380/009/ERR3809539/ERR3809539.fastq.gz

##

## gzip *.fastq.gz

## #Then we move the files

## mv *.fastq /before_trim


##  wget [link]


## fastqc -O quality_files/before_trim data/*fastq

##

##
## cd data/

## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809539.fastq Nematostella_vectensis_CH2_12d_POU-+_wild_rep4.fastq ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10

## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809538.fastq Nematostella_vectensis_CH2_12d_POU-+_wild_rep3.fastq ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10

## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809537.fastq Nematostella_vectensis_CH2_12d_POU-+_wild_rep2.fastq ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10

## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809536.fastq Nematostella_vectensis_CH2_12d_POU-+_wild_rep1.fastq ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10

##
## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809533.fastq Nematostella_vectensis_CH2_12d_POU--_rep1 ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10

## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809532.fastq Nematostella_vectensis_CH2_12d_POU--_rep2 ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10

## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809534.fastq Nematostella_vectensis_CH2_12d_POU--_rep3 ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10

## java -jar [#PATH_TO_TRIMMOMATIC_JAVA_FILE]/trimmomatic-0.32.jar SE -threads 4 before_trim/ERR3809535.fastq Nematostella_vectensis_CH2_12d_POU--_rep4 ILLUMINACLIP:Sequencing_adaptors.fasta:2:30:10 SLIDINGWINDOW:4:15 MINLEN:60 HEADCROP:10


## fastqc -O quality_files/after_trim data/*fastq

##

## #$

## Rscript [/path_to_spp_script]run_spp.R -c=[ChIPseq_rep1] -savp -out=[ChIPseq_rep1.outphantom]

## #$


## ----eval=FALSE---------------------------------------------------------------------------------
## BiocManager::install("ChIPQC")


## ---- eval=FALSE--------------------------------------------------------------------------------
## library(ChIPQC)
## sample1 = ChIPQCsample('../data/[ChIPseq_rep1]')
## sample2 = ChIPQCsample('../data/[ChIPseq_rep2]')
## sample3 = ChIPQCsample('../data/[ChIPseq_rep3]')
##
## # Report from sample 1
## ChIPQCreport(sample1)
## # Report from sample 2
## ChIPQCreport(sample2)
## # Report from sample 3
## ChIPQCreport(sample3)


## sed 's/NEMVE//g' [fasta_file_with_sequences] > Nvectensis.fa


## STAR --runThreadN 6 --runMode genomeGenerate --genomeDir STAR_genome_index --genomeFastaFiles ref_genomes/[Nvectensis.fa] --sjdbGTFfile ref_genomes/[nveGenes.vienna130208.nemVec1.gtf] --sjdbOverhang 99


## #@ run for each replicate

## STAR --runThreadN 6 --genomeDir  ref_genomes/ --readFilesIn data/Nematostella_vectensis_CH2_12d_POU-+_wild_rep1.fastq --outFileNamePrefix alignment/Nematostella_vectensis_CH2_12d_POU-+_wild_rep1

## #@ run for each replicate


## cd alignment

## #@ run for each replicate

## # To compress file to bam

## samtools view -S -b alignment/Nematostella_vectensis_CH2_12d_POU-+_wild_rep1.out.sam > Nvect_POU-+_rep1_Aligned.bam

## # Sort

## samtools sort Nvect_POU-+_rep1_Aligned.bam -o Nvect_POU-+_rep1_sorted.bam

## # Counts

## htseq-count -f bam -s yes -r pos Nvect_POU-+_rep1_sorted.bam ../ref_genomes/[nveGenes.vienna130208.nemVec1.gtf] > POU-+_rep1.counts

## #@ run for each replicate


## cd alignment

## paste POU--_rep*.counts POU-+_rep*.counts > counts_table_DGE.txt


## ---- message=FALSE, warning=FALSE--------------------------------------------------------------
library(DESeq2)
library(apeglm)
#Read data
data.dge <- read.delim(file = '../alignment/counts_table_DGE.txt',sep = '\t', header = F, row.names = 1)
#Assign names
condition <- factor(c("POU_ko","POU_ko","POU_ko","POU_ko","POU_wt","POU_wt","POU_wt","POU_wt"), levels = c('POU_wt','POU_ko'))
colData <- data.frame(row.names=colnames(data.dge), condition)

dds <- DESeqDataSetFromMatrix(countData = data.dge,
                              colData = colData,
                              design = ~ condition )

#Erase data with no counts
dds <- dds[ rowSums(counts(dds)) > 1, ]
dds <- DESeq(dds)
res <- results(dds)

#You can preprocces all again, and you should get this figure
resLFC <- lfcShrink(dds, coef=2, type="apeglm")
plotMA(resLFC, ylim=c(-4,4))


## ---- message=FALSE-----------------------------------------------------------------------------
library(reshape)
library(SummarizedExperiment)
vst <- varianceStabilizingTransformation(dds)
vst@colData@listData[["condition"]] <- c("POU_ko","POU_ko","POU_ko","POU_ko","POU_wt","POU_wt","POU_wt","POU_wt")
plotPCA(vst, intgroup = "condition")


## -----------------------------------------------------------------------------------------------
#Para 0.05
nrow(data.frame(resLFC@rownames[resLFC@listData[["pvalue"]] <0.05]))
#Para 0.01
nrow(data.frame(resLFC@rownames[resLFC@listData[["pvalue"]] <0.01]))


## -----------------------------------------------------------------------------------------------
#Keep only p-value<0.01
differential_genes <- data.frame(resLFC@rownames[resLFC@listData[["pvalue"]] <0.01])
#Add column name
colnames(differential_genes) <- c('gene')
#Add Fold change
differential_genes$fold_change <- resLFC@listData[["log2FoldChange"]][resLFC@listData[["pvalue"]] <0.01]
#Add base mean
differential_genes$mean_counts <- resLFC@listData[["baseMean"]][resLFC@listData[["pvalue"]] <0.01]
#Add p value
differential_genes$pvalue <- resLFC@listData[["pvalue"]][resLFC@listData[["pvalue"]] <0.01]
# Eliminate empty rows
differential_genes <- differential_genes[complete.cases(differential_genes),]


## ----eval=FALSE---------------------------------------------------------------------------------
## #Read file
## GO_terms <- read.delim(file = '../data/nveGenes.vienna130208.GO_annotation_141017.txt',sep = '\t', header = F)
## # Extract those that are differentially expressed
## GO_terms_differential_expressed <- GO_terms[GO_terms$V1%in%differential_genes$gene, ]
## #Quiero tener los valores de p, guardados en differential_genes$pvalue en el df de GO
## for(j in 1:nrow(GO_terms_differential_expressed)) {
##   for(k in 1:nrow(differential_genes)) {
##      if (GO_terms_differential_expressed$V1[j] == differential_genes$gene[k]) {
##          GO_terms_differential_expressed$pvalue[j] <- differential_genes$pvalue[k]
##      }
##     k <- k+1
##   }
##   j<- j+1
##   }


## -----------------------------------------------------------------------------------------------
#reading table
equival <- read.delim(file = '../data/equivalence_table.tsv',sep = '\t', header = F)
###Loop for extracting data
differential_genes$JGI_ID <- 'No data'
j <-1
k<-1

for(j in 1:nrow(differential_genes)) {
  for(k in 1:nrow(equival)) {
     if (differential_genes$gene[j] == equival$V1[k]) {
         differential_genes$JGI_ID[j] <- equival$V3[k]
     }
    k <- k+1
  }
  j<- j+1
}


upregulated_genes <- differential_genes[differential_genes$fold_change>0,]
downregulated_genes <- differential_genes[differential_genes$fold_change<0,]


## ----eval=FALSE---------------------------------------------------------------------------------
## library(rrvgo)
## library(org.Ce.eg.db) #C. elegans data as reference
## library(clusterProfiler)
## #We need some dfs to do the job
##
## #Getting terms to gene dataframe
## GOterms_to_genes <- GOterms_to_genes[,c(3,1)]
## colnames(GOterms_to_genes) <- c('term','gene')
## #Getting term to name df
## GOterms_to_names <- GOterms_to_names[,c(3,4)]
## colnames(GOterms_to_names) <- c('term','name')
##
## #GO enrichment for downregulated genes
## ggo <- enricher(
##   downregulated_genes$gene,
##   pvalueCutoff = 0.05,
##   pAdjustMethod = "BH",
##   TERM2GENE=GOterms_to_genes,
##   TERM2NAME = GOterms_to_names
## )
##
## #GO enrichment result
## ggo_result <- ggo@result
## #Filtering GO enrichment result
## ggo_result <- ggo_result[ggo_result$p.adjust<0.05,]
##
## #Generating matrix to plot
## simMatrix <- calculateSimMatrix(ggo_result$ID,
##                                 orgdb="org.Ce.eg.db",
##                                 ont="BP",
##                                 method="Rel")
##
## GO_terms_names <- ggo_result[ggo_result$ID%in%row.names(simMatrix),]
## scores <- setNames(-log10(GO_terms_names$p.adjust), GO_terms_names$ID)
## #Reducing dimensions to plot
## reducedTerms <- reduceSimMatrix(simMatrix, scores,
##                                 orgdb="org.Ce.eg.db", threshold = 0.8)
## treemapPlot(reducedTerms)


## macs2 callpeak -t data/[ChIPseq_rep1] -c data/[ChIPseq_rep1_input] -f BAMPE -g 361523379 -n cp -B


## # Code used to obtain consensus peaks.

## [path_to_mspc]/mspc -i data/*.narrowPeak -r tec -w 1e-4 -s 1e-8 -o ./MSPC_outdir


## bedtools getfasta -fi ../ref_genomes/Nvectensis.fa -bed MSPC_outdir/ConsensusPeaks.bed -fo consensus_peaks_sequence


## ---- eval=FALSE--------------------------------------------------------------------------------
## library('GenomicFeatures')
## library("GenomicRanges")
## library("AnnotationHub")
## library("rtracklayer")
##
## #Reading annotation files
## anota_data <-  makeTxDbFromGFF(file = '../data/[annotation_file.gtf]', format = "gff3")
##
## #getting promoters
## promoters_genome <- data.frame(promoters(genes(anota_data), upstream = 350, downstream = 100))
## promoters_genome$start[promoters_genome$start<0] <- 0
##
##
##
## #To get the genes
## genes_anotation <- data.frame(genes(anota_data))
## #Write file to bedtools
## write.table(x = genes_anotation,file = '../data/genes.bed',quote = F,sep = '\t',row.names = F,col.names = F)
## write.table(x = promoters_total,file = '../data/promoter.bed',quote = F,sep = '\t',row.names = F,col.names = F)
##


## bedtools intersect -wb -a  MSPC_outdir_1/ConsensusPeaks.bed -b promoter.bed  > peaks_on_promoters.tsv

## bedtools intersect -wb -a  MSPC_outdir_1/ConsensusPeaks.bed -b genes.bed  > peaks_on_genes.tsv


## -----------------------------------------------------------------------------------------------
#Change the name of the file to peaks_on_promoters.tsv and peaks_on_genes.tsv
peaks_on_promoters <- read.table(file = '../data/peaks_on_prom_example.tsv', sep = '\t')
peaks_on_genes <- read.table(file = '../data/peaks_on_gene_example.tsv', sep = '\t')


## -----------------------------------------------------------------------------------------------
#Promoter regions of genes with peaks
#There should not be repeated data
peaks_on_promoters <- peaks_on_promoters[,c(6,7,8,9,10,11)]
peaks_on_promoters <- peaks_on_promoters[!duplicated(peaks_on_promoters),]

print('We have 1271 genes with peaks on the promoter region')

#Genes with peaks
#Should not be duplicated data
genes_with_peaks <- peaks_on_genes[,c(6,7,8,9,10,11)]
genes_with_peaks <- genes_with_peaks[!duplicated(genes_with_peaks),]
print('We have 3867 genes with peaks on the promoter region')


## ----warning=FALSE------------------------------------------------------------------------------
library(dplyr)
###########Peaks on differentially expressed genes ########
differential_genes_with_peaks_on_genes <-differential_genes[differential_genes$gene%in%genes_with_peaks$V11,]

###########Peaks on promoter ########
differential_genes_with_peaks_on_promoter <-differential_genes[differential_genes$gene%in%peaks_on_promoters$V11,]


#List of all genes
differential_genes_with_peaks_all <- unique.data.frame(data.frame(rbind(differential_genes_with_peaks_on_promoter,differential_genes_with_peaks_on_genes)))

differential_genes_with_peaks_upregulated <- differential_genes_with_peaks_all[differential_genes_with_peaks_all$fold_change>0,]

differential_genes_with_peaks_downregulated <- differential_genes_with_peaks_all[differential_genes_with_peaks_all$fold_change<0,]

#Differences in the data
genes_with_peaks_in_gene_body <- differential_genes_with_peaks_on_genes[!differential_genes_with_peaks_on_genes$gene%in%differential_genes_with_peaks_on_promoter$gene,]

genes_with_peaks_in_promoter_region <- differential_genes_with_peaks_on_promoter[!differential_genes_with_peaks_on_promoter$gene%in%differential_genes_with_peaks_on_genes$gene,]

genes_with_peaks_on_gene_body_and_promoter_region <- differential_genes_with_peaks_on_genes[differential_genes_with_peaks_on_genes$gene%in%differential_genes_with_peaks_on_promoter$gene,]


## ---- eval=FALSE--------------------------------------------------------------------------------
## library(ggvenn)
##
## x <- list(Gene_body = differential_genes_with_peaks_on_genes$gene,Promoters = differential_genes_with_peaks_on_promoter$gene)
## ggvenn(x,
##          fill_color = c("#0073C2FF", "#CD534CFF"),
##   stroke_size = 0.5, set_name_size = 4
##   )+
## ggtitle('Venn diagram of ChIP-seq peaks in regions of \n differentially expressed genes.')


## ---- eval=F------------------------------------------------------------------------------------
## #Graphic
## library(rrvgo)
## library(org.Ce.eg.db)
## ddgt <- differential_genes_with_peaks_on_promoter[differential_genes_with_peaks_on_promoter$fold_change<0,]
## gene_enricher <- ddgt$gene
## ggo <- enricher(
##   gene_enricher,
##   pvalueCutoff = 0.05,
##   pAdjustMethod = "BH",
##   minGSSize = 10,
##   maxGSSize = 500,
##   qvalueCutoff = 0.2,
##   TERM2GENE=GOterms_to_genes,
##   TERM2NAME = GOterms_to_names
## )
##
## ggo_result <- ggo@result
## ggo_result <- ggo_result[ggo_result$p.adjust<0.05,]
## simMatrix <- calculateSimMatrix(ggo_result$ID,
##                                 orgdb="org.Ce.eg.db",
##                                 ont="BP",
##                                 method="Rel")
##
## GO_terms_names <- ggo_result[ggo_result$ID%in%row.names(simMatrix),]
## scores <- setNames(-log10(GO_terms_names$p.adjust), GO_terms_names$ID)
## reducedTerms <- reduceSimMatrix(simMatrix, scores,
##                                 orgdb="org.Ce.eg.db", threshold = 0.7)
## treemapPlot(reducedTerms)


## -----------------------------------------------------------------------------------------------
options(width = 120)
pkgs <- loadedNamespaces()
pkgs <- installed.packages()[, "Package"]
sessioninfo::session_info(pkgs)

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top