https://github.com/amlalejini/directed-digital-evolution
Raw File
Tip revision: c2f43c9e641cee33873bc6b194edb77c9c377982 authored by amlalejini on 29 June 2022, 17:59:38 UTC
Deploying to gh-pages from @ c94684a751a54bc6f2ef2e7c0830614dc280ca01 🚀
Tip revision: c2f43c9
conventional-genetic-programming-experiment.html
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>

  <meta charset="utf-8" />
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <title>Chapter 6 Conventional genetic programming experiment | Supplemental Material for Directed Digital Evolution Project</title>
  <meta name="description" content="Supplemental material" />
  <meta name="generator" content="bookdown 0.27 and GitBook 2.6.7" />

  <meta property="og:title" content="Chapter 6 Conventional genetic programming experiment | Supplemental Material for Directed Digital Evolution Project" />
  <meta property="og:type" content="book" />
  
  <meta property="og:description" content="Supplemental material" />
  <meta name="github-repo" content="amlalejini/directed-digital-evolution" />

  <meta name="twitter:card" content="summary" />
  <meta name="twitter:title" content="Chapter 6 Conventional genetic programming experiment | Supplemental Material for Directed Digital Evolution Project" />
  
  <meta name="twitter:description" content="Supplemental material" />
  

<meta name="author" content="Alexander Lalejini, Emily Dolson, Anya E. Vostinar, and Luis Zaman" />


<meta name="date" content="2022-06-29" />

  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="apple-mobile-web-app-capable" content="yes" />
  <meta name="apple-mobile-web-app-status-bar-style" content="black" />
  
  
<link rel="prev" href="digital-organisms.html"/>
<link rel="next" href="directed-digital-evolution-experiment.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/fuse.js@6.4.6/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />








<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>


<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
  { position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
  { content: attr(title);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; pointer-events: all; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
    color: #aaaaaa;
  }
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa;  padding-left: 4px; }
div.sourceCode
  {  }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>


<link rel="stylesheet" href="style.css" type="text/css" />
</head>

<body>



  <div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">

    <div class="book-summary">
      <nav role="navigation">

<ul class="summary">
<li><a href="./">Supplemental material</a></li>

<li class="divider"></li>
<li class="chapter" data-level="1" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i><b>1</b> Introduction</a><ul>
<li class="chapter" data-level="1.1" data-path="index.html"><a href="index.html#about-this-supplemental-material"><i class="fa fa-check"></i><b>1.1</b> About this supplemental material</a><ul>
<li class="chapter" data-level="1.1.1" data-path="index.html"><a href="index.html#contents"><i class="fa fa-check"></i><b>1.1.1</b> Contents</a></li>
</ul></li>
<li class="chapter" data-level="1.2" data-path="index.html"><a href="index.html#contributing-authors"><i class="fa fa-check"></i><b>1.2</b> Contributing authors</a></li>
<li class="chapter" data-level="1.3" data-path="index.html"><a href="index.html#research-overview"><i class="fa fa-check"></i><b>1.3</b> Research overview</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="software-availability.html"><a href="software-availability.html"><i class="fa fa-check"></i><b>2</b> Software availability</a></li>
<li class="chapter" data-level="3" data-path="data-availability.html"><a href="data-availability.html"><i class="fa fa-check"></i><b>3</b> Data availability</a></li>
<li class="chapter" data-level="4" data-path="compiling-and-running-our-experiments.html"><a href="compiling-and-running-our-experiments.html"><i class="fa fa-check"></i><b>4</b> Compiling and running our experiments</a><ul>
<li class="chapter" data-level="4.1" data-path="compiling-and-running-our-experiments.html"><a href="compiling-and-running-our-experiments.html#manual"><i class="fa fa-check"></i><b>4.1</b> Manual</a></li>
<li class="chapter" data-level="4.2" data-path="compiling-and-running-our-experiments.html"><a href="compiling-and-running-our-experiments.html#docker"><i class="fa fa-check"></i><b>4.2</b> Docker</a></li>
</ul></li>
<li class="chapter" data-level="5" data-path="digital-organisms.html"><a href="digital-organisms.html"><i class="fa fa-check"></i><b>5</b> Digital Organisms</a><ul>
<li class="chapter" data-level="5.1" data-path="digital-organisms.html"><a href="digital-organisms.html#virtual-hardware-components"><i class="fa fa-check"></i><b>5.1</b> Virtual Hardware Components</a></li>
<li class="chapter" data-level="5.2" data-path="digital-organisms.html"><a href="digital-organisms.html#instruction-set"><i class="fa fa-check"></i><b>5.2</b> Instruction set</a></li>
<li class="chapter" data-level="5.3" data-path="digital-organisms.html"><a href="digital-organisms.html#ancestral-genomes"><i class="fa fa-check"></i><b>5.3</b> Ancestral genomes</a><ul>
<li class="chapter" data-level="5.3.1" data-path="digital-organisms.html"><a href="digital-organisms.html#ancestral-genome-for-genetic-programming-experiment"><i class="fa fa-check"></i><b>5.3.1</b> Ancestral genome for genetic programming experiment</a></li>
<li class="chapter" data-level="5.3.2" data-path="digital-organisms.html"><a href="digital-organisms.html#ancestral-genome-for-directed-evolution-experiments"><i class="fa fa-check"></i><b>5.3.2</b> Ancestral genome for directed evolution experiments</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="6" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html"><i class="fa fa-check"></i><b>6</b> Conventional genetic programming experiment</a><ul>
<li class="chapter" data-level="6.1" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#overview"><i class="fa fa-check"></i><b>6.1</b> Overview</a></li>
<li class="chapter" data-level="6.2" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#analysis-dependencies"><i class="fa fa-check"></i><b>6.2</b> Analysis dependencies</a></li>
<li class="chapter" data-level="6.3" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#setup"><i class="fa fa-check"></i><b>6.3</b> Setup</a></li>
<li class="chapter" data-level="6.4" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#number-of-successful-replicates"><i class="fa fa-check"></i><b>6.4</b> Number of successful replicates</a></li>
<li class="chapter" data-level="6.5" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#final-task-coverage"><i class="fa fa-check"></i><b>6.5</b> Final task coverage</a></li>
<li class="chapter" data-level="6.6" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#generation-2000-task-coverage"><i class="fa fa-check"></i><b>6.6</b> Generation 2,000 task coverage</a></li>
<li class="chapter" data-level="6.7" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#population-level-task-coverage"><i class="fa fa-check"></i><b>6.7</b> Population-level task coverage</a></li>
<li class="chapter" data-level="6.8" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#generations-elapsed-before-a-solution-evolves"><i class="fa fa-check"></i><b>6.8</b> Generations elapsed before a solution evolves</a></li>
<li class="chapter" data-level="6.9" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#best-task-coverage-over-time"><i class="fa fa-check"></i><b>6.9</b> Best task coverage over time</a></li>
<li class="chapter" data-level="6.10" data-path="conventional-genetic-programming-experiment.html"><a href="conventional-genetic-programming-experiment.html#manuscript-figure"><i class="fa fa-check"></i><b>6.10</b> Manuscript Figure</a></li>
</ul></li>
<li class="chapter" data-level="7" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html"><i class="fa fa-check"></i><b>7</b> Directed digital evolution experiment</a><ul>
<li class="chapter" data-level="7.1" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#overview-1"><i class="fa fa-check"></i><b>7.1</b> Overview</a></li>
<li class="chapter" data-level="7.2" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#analysis-dependencies-1"><i class="fa fa-check"></i><b>7.2</b> Analysis dependencies</a></li>
<li class="chapter" data-level="7.3" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#setup-1"><i class="fa fa-check"></i><b>7.3</b> Setup</a></li>
<li class="chapter" data-level="7.4" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#best-single-population-task-coverage"><i class="fa fa-check"></i><b>7.4</b> Best single-population task coverage</a><ul>
<li class="chapter" data-level="7.4.1" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#best-single-population-task-coverage-time-series"><i class="fa fa-check"></i><b>7.4.1</b> Best single-population task coverage time series</a></li>
</ul></li>
<li class="chapter" data-level="7.5" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#metapopulation-task-coverage"><i class="fa fa-check"></i><b>7.5</b> Metapopulation task coverage</a><ul>
<li class="chapter" data-level="7.5.1" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#metapopulation-task-coverage-time-series"><i class="fa fa-check"></i><b>7.5.1</b> Metapopulation task coverage time series</a></li>
</ul></li>
<li class="chapter" data-level="7.6" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#metapopulation-task-profile-diversity"><i class="fa fa-check"></i><b>7.6</b> Metapopulation task profile diversity</a><ul>
<li class="chapter" data-level="7.6.1" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#number-of-different-task-profiles"><i class="fa fa-check"></i><b>7.6.1</b> Number of different task profiles</a></li>
<li class="chapter" data-level="7.6.2" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#task-profile-spread"><i class="fa fa-check"></i><b>7.6.2</b> Task profile spread</a></li>
<li class="chapter" data-level="7.6.3" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#task-profile-entropy"><i class="fa fa-check"></i><b>7.6.3</b> Task profile entropy</a></li>
</ul></li>
<li class="chapter" data-level="7.7" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#task-coverage-per-n-populations"><i class="fa fa-check"></i><b>7.7</b> Task coverage per N populations</a></li>
<li class="chapter" data-level="7.8" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#average-number-of-different-populations-selected-per-generation"><i class="fa fa-check"></i><b>7.8</b> Average number of different populations selected per generation</a><ul>
<li class="chapter" data-level="7.8.1" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#entropy-of-selected-population-ids"><i class="fa fa-check"></i><b>7.8.1</b> Entropy of selected population IDs</a></li>
</ul></li>
<li class="chapter" data-level="7.9" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#average-number-of-organisms-in-populations-at-end-of-maturation-period"><i class="fa fa-check"></i><b>7.9</b> Average number of organisms in populations at end of maturation period</a></li>
<li class="chapter" data-level="7.10" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#average-generations-per-maturation-period"><i class="fa fa-check"></i><b>7.10</b> Average generations per maturation period</a></li>
<li class="chapter" data-level="7.11" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#representative-task-profiles"><i class="fa fa-check"></i><b>7.11</b> Representative task profiles</a></li>
<li class="chapter" data-level="7.12" data-path="directed-digital-evolution-experiment.html"><a href="directed-digital-evolution-experiment.html#manuscript-figures"><i class="fa fa-check"></i><b>7.12</b> Manuscript figures</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><i class="fa fa-check"></i><b>8</b> Aligned individual-level and population-level task directed evolution experiment</a><ul>
<li class="chapter" data-level="8.1" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#overview-2"><i class="fa fa-check"></i><b>8.1</b> Overview</a></li>
<li class="chapter" data-level="8.2" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#analysis-dependencies-2"><i class="fa fa-check"></i><b>8.2</b> Analysis dependencies</a></li>
<li class="chapter" data-level="8.3" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#setup-2"><i class="fa fa-check"></i><b>8.3</b> Setup</a></li>
<li class="chapter" data-level="8.4" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#best-single-population-task-coverage-1"><i class="fa fa-check"></i><b>8.4</b> Best single-population task coverage</a><ul>
<li class="chapter" data-level="8.4.1" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#best-single-population-task-coverage-time-series-1"><i class="fa fa-check"></i><b>8.4.1</b> Best single-population task coverage time series</a></li>
</ul></li>
<li class="chapter" data-level="8.5" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#metapopulation-task-coverage-1"><i class="fa fa-check"></i><b>8.5</b> Metapopulation task coverage</a><ul>
<li class="chapter" data-level="8.5.1" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#metapopulation-task-coverage-time-series-1"><i class="fa fa-check"></i><b>8.5.1</b> Metapopulation task coverage time series</a></li>
</ul></li>
<li class="chapter" data-level="8.6" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#metapopulation-task-profile-diversity-1"><i class="fa fa-check"></i><b>8.6</b> Metapopulation task profile diversity</a><ul>
<li class="chapter" data-level="8.6.1" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#number-of-different-task-profiles-1"><i class="fa fa-check"></i><b>8.6.1</b> Number of different task profiles</a></li>
<li class="chapter" data-level="8.6.2" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#task-profile-spread-1"><i class="fa fa-check"></i><b>8.6.2</b> Task profile spread</a></li>
<li class="chapter" data-level="8.6.3" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#task-profile-entropy-1"><i class="fa fa-check"></i><b>8.6.3</b> Task profile entropy</a></li>
</ul></li>
<li class="chapter" data-level="8.7" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#task-coverage-per-n-populations-1"><i class="fa fa-check"></i><b>8.7</b> Task coverage per N populations</a></li>
<li class="chapter" data-level="8.8" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#average-number-of-different-populations-selected-per-generation-1"><i class="fa fa-check"></i><b>8.8</b> Average number of different populations selected per generation</a><ul>
<li class="chapter" data-level="8.8.1" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#entropy-of-selected-population-ids-1"><i class="fa fa-check"></i><b>8.8.1</b> Entropy of selected population IDs</a></li>
</ul></li>
<li class="chapter" data-level="8.9" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#average-number-of-organisms-in-populations-at-end-of-maturation-period-1"><i class="fa fa-check"></i><b>8.9</b> Average number of organisms in populations at end of maturation period</a></li>
<li class="chapter" data-level="8.10" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#average-generations-per-maturation-period-1"><i class="fa fa-check"></i><b>8.10</b> Average generations per maturation period</a></li>
<li class="chapter" data-level="8.11" data-path="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html"><a href="aligned-individual-level-and-population-level-task-directed-evolution-experiment.html#manuscript-figures-1"><i class="fa fa-check"></i><b>8.11</b> Manuscript figures</a></li>
</ul></li>
<li class="chapter" data-level="9" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html"><i class="fa fa-check"></i><b>9</b> Varying population maturation period</a><ul>
<li class="chapter" data-level="9.1" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#overview-3"><i class="fa fa-check"></i><b>9.1</b> Overview</a></li>
<li class="chapter" data-level="9.2" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#analysis-dependencies-3"><i class="fa fa-check"></i><b>9.2</b> Analysis dependencies</a></li>
<li class="chapter" data-level="9.3" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#setup-3"><i class="fa fa-check"></i><b>9.3</b> Setup</a></li>
<li class="chapter" data-level="9.4" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#average-number-of-organisms"><i class="fa fa-check"></i><b>9.4</b> Average number of organisms</a></li>
<li class="chapter" data-level="9.5" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#average-generations-elapsed-during-the-maturation-period"><i class="fa fa-check"></i><b>9.5</b> Average generations elapsed during the maturation period</a></li>
<li class="chapter" data-level="9.6" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#total-generations"><i class="fa fa-check"></i><b>9.6</b> Total generations</a></li>
<li class="chapter" data-level="9.7" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#performance"><i class="fa fa-check"></i><b>9.7</b> Performance</a><ul>
<li class="chapter" data-level="9.7.1" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#cpu-cycles-per-replication"><i class="fa fa-check"></i><b>9.7.1</b> CPU cycles per replication</a></li>
<li class="chapter" data-level="9.7.2" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#best-population-task-coverage"><i class="fa fa-check"></i><b>9.7.2</b> Best-population task coverage</a></li>
<li class="chapter" data-level="9.7.3" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#metapopulation-task-coverage-2"><i class="fa fa-check"></i><b>9.7.3</b> Metapopulation task coverage</a></li>
</ul></li>
<li class="chapter" data-level="9.8" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#population-level-task-profile-diversity"><i class="fa fa-check"></i><b>9.8</b> Population-level Task Profile Diversity</a><ul>
<li class="chapter" data-level="9.8.1" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#task-profile-richness"><i class="fa fa-check"></i><b>9.8.1</b> Task profile richness</a></li>
<li class="chapter" data-level="9.8.2" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#task-profile-entropy-2"><i class="fa fa-check"></i><b>9.8.2</b> Task profile entropy</a></li>
<li class="chapter" data-level="9.8.3" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#spread-average-cosine-distance"><i class="fa fa-check"></i><b>9.8.3</b> Spread (average cosine distance)</a></li>
</ul></li>
<li class="chapter" data-level="9.9" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#selection"><i class="fa fa-check"></i><b>9.9</b> Selection</a><ul>
<li class="chapter" data-level="9.9.1" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#average-number-of-unique-populations-selected"><i class="fa fa-check"></i><b>9.9.1</b> Average number of unique populations selected</a></li>
<li class="chapter" data-level="9.9.2" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#average-entropy-of-selection-ids"><i class="fa fa-check"></i><b>9.9.2</b> Average entropy of selection ids</a></li>
</ul></li>
<li class="chapter" data-level="9.10" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#manuscript-figures-2"><i class="fa fa-check"></i><b>9.10</b> Manuscript Figures</a></li>
<li class="chapter" data-level="9.11" data-path="varying-population-maturation-period.html"><a href="varying-population-maturation-period.html#discussion"><i class="fa fa-check"></i><b>9.11</b> Discussion</a></li>
</ul></li>
<li class="chapter" data-level="10" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html"><i class="fa fa-check"></i><b>10</b> Varied genome lengths</a><ul>
<li class="chapter" data-level="10.1" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#overview-4"><i class="fa fa-check"></i><b>10.1</b> Overview</a></li>
<li class="chapter" data-level="10.2" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#analysis-dependencies-4"><i class="fa fa-check"></i><b>10.2</b> Analysis dependencies</a></li>
<li class="chapter" data-level="10.3" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#setup-4"><i class="fa fa-check"></i><b>10.3</b> Setup</a></li>
<li class="chapter" data-level="10.4" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#average-generations-per-maturation-period-2"><i class="fa fa-check"></i><b>10.4</b> Average generations per maturation period</a></li>
<li class="chapter" data-level="10.5" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#total-generations-over-experiment"><i class="fa fa-check"></i><b>10.5</b> Total generations over experiment</a></li>
<li class="chapter" data-level="10.6" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#performance-1"><i class="fa fa-check"></i><b>10.6</b> Performance</a><ul>
<li class="chapter" data-level="10.6.1" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#cpu-cycles-per-replication-1"><i class="fa fa-check"></i><b>10.6.1</b> CPU cycles per replication</a></li>
<li class="chapter" data-level="10.6.2" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#best-single-population-task-coverage-2"><i class="fa fa-check"></i><b>10.6.2</b> Best single-population task coverage</a></li>
<li class="chapter" data-level="10.6.3" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#metapopulation-task-coverage-3"><i class="fa fa-check"></i><b>10.6.3</b> Metapopulation task coverage</a></li>
</ul></li>
<li class="chapter" data-level="10.7" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#population-level-task-profile-diversity-1"><i class="fa fa-check"></i><b>10.7</b> Population-level task profile diversity</a><ul>
<li class="chapter" data-level="10.7.1" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#task-profile-richness-1"><i class="fa fa-check"></i><b>10.7.1</b> Task profile richness</a></li>
<li class="chapter" data-level="10.7.2" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#task-profile-entropy-3"><i class="fa fa-check"></i><b>10.7.2</b> Task profile entropy</a></li>
<li class="chapter" data-level="10.7.3" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#spread-avg-cosine-distance"><i class="fa fa-check"></i><b>10.7.3</b> Spread (avg cosine distance)</a></li>
</ul></li>
<li class="chapter" data-level="10.8" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#selection-1"><i class="fa fa-check"></i><b>10.8</b> Selection</a><ul>
<li class="chapter" data-level="10.8.1" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#average-number-of-unique-populations-selected-1"><i class="fa fa-check"></i><b>10.8.1</b> Average number of unique populations selected</a></li>
<li class="chapter" data-level="10.8.2" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#average-entropy-of-selection-ids-1"><i class="fa fa-check"></i><b>10.8.2</b> Average entropy of selection ids</a></li>
</ul></li>
<li class="chapter" data-level="10.9" data-path="varied-genome-lengths.html"><a href="varied-genome-lengths.html#discussion-1"><i class="fa fa-check"></i><b>10.9</b> Discussion</a></li>
</ul></li>
<li class="chapter" data-level="11" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html"><i class="fa fa-check"></i><b>11</b> Population propagule sample size</a><ul>
<li class="chapter" data-level="11.1" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#overview-5"><i class="fa fa-check"></i><b>11.1</b> Overview</a></li>
<li class="chapter" data-level="11.2" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#analysis-dependencies-5"><i class="fa fa-check"></i><b>11.2</b> Analysis dependencies</a></li>
<li class="chapter" data-level="11.3" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#setup-5"><i class="fa fa-check"></i><b>11.3</b> Setup</a></li>
<li class="chapter" data-level="11.4" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#average-number-of-organisms-1"><i class="fa fa-check"></i><b>11.4</b> Average number of organisms</a></li>
<li class="chapter" data-level="11.5" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#average-generations-per-maturation-period-3"><i class="fa fa-check"></i><b>11.5</b> Average generations per maturation period</a></li>
<li class="chapter" data-level="11.6" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#performance-2"><i class="fa fa-check"></i><b>11.6</b> Performance</a><ul>
<li class="chapter" data-level="11.6.1" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#best-population-task-coverage-1"><i class="fa fa-check"></i><b>11.6.1</b> Best population task coverage</a></li>
<li class="chapter" data-level="11.6.2" data-path="population-propagule-sample-size.html"><a href="population-propagule-sample-size.html#metapopulation-task-coverage-4"><i class="fa fa-check"></i><b>11.6.2</b> Metapopulation task coverage</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with ❤ and bookdown</a></li>

</ul>

      </nav>
    </div>

    <div class="book-body">
      <div class="body-inner">
        <div class="book-header" role="navigation">
          <h1>
            <i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Supplemental Material for Directed Digital Evolution Project</a>
          </h1>
        </div>

        <div class="page-wrapper" tabindex="-1" role="main">
          <div class="page-inner">

            <section class="normal" id="section-">
<div id="conventional-genetic-programming-experiment" class="section level1 hasAnchor">
<h1><span class="header-section-number">Chapter 6</span> Conventional genetic programming experiment<a href="conventional-genetic-programming-experiment.html#conventional-genetic-programming-experiment" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<p>Data analyses for our conventional evolutionary computing experiment.</p>
<div id="overview" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.1</span> Overview<a href="conventional-genetic-programming-experiment.html#overview" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb8-1" title="1">experiment_slug &lt;-<span class="st"> &quot;2021-11-15-ec&quot;</span></a>
<a class="sourceLine" id="cb8-2" title="2"></a>
<a class="sourceLine" id="cb8-3" title="3">working_directory &lt;-<span class="st"> </span><span class="kw">paste0</span>(<span class="st">&quot;experiments/&quot;</span>,experiment_slug,<span class="st">&quot;/analysis/&quot;</span>)</a></code></pre></div>
</div>
<div id="analysis-dependencies" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.2</span> Analysis dependencies<a href="conventional-genetic-programming-experiment.html#analysis-dependencies" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Load all required R libraries</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" title="1"><span class="kw">library</span>(tidyverse)</a></code></pre></div>
<pre><code>## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --</code></pre>
<pre><code>## v ggplot2 3.3.6     v purrr   0.3.4
## v tibble  3.1.7     v dplyr   1.0.9
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1</code></pre>
<pre><code>## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()</code></pre>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb13-1" title="1"><span class="kw">library</span>(ggplot2)</a>
<a class="sourceLine" id="cb13-2" title="2"><span class="kw">library</span>(cowplot)</a>
<a class="sourceLine" id="cb13-3" title="3"><span class="kw">library</span>(RColorBrewer)</a>
<a class="sourceLine" id="cb13-4" title="4"><span class="kw">library</span>(khroma)</a>
<a class="sourceLine" id="cb13-5" title="5"><span class="kw">source</span>(<span class="st">&quot;https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce947837ef1a4c65a73bffb3f/geom_flat_violin.R&quot;</span>)</a></code></pre></div>
<p>These analyses were knit with the following environment:</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb14-1" title="1"><span class="kw">print</span>(version)</a></code></pre></div>
<pre><code>##                _                           
## platform       x86_64-pc-linux-gnu         
## arch           x86_64                      
## os             linux-gnu                   
## system         x86_64, linux-gnu           
## status                                     
## major          4                           
## minor          2.1                         
## year           2022                        
## month          06                          
## day            23                          
## svn rev        82513                       
## language       R                           
## version.string R version 4.2.1 (2022-06-23)
## nickname       Funny-Looking Kid</code></pre>
</div>
<div id="setup" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.3</span> Setup<a href="conventional-genetic-programming-experiment.html#setup" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Load experiment summary data.</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb16-1" title="1">exp_summary_data_loc &lt;-<span class="st"> </span><span class="kw">paste0</span>(working_directory,<span class="st">&quot;data/experiment_summary.csv&quot;</span>)</a>
<a class="sourceLine" id="cb16-2" title="2">exp_summary_data &lt;-<span class="st"> </span><span class="kw">read.csv</span>(exp_summary_data_loc, <span class="dt">na.strings=</span><span class="st">&quot;NONE&quot;</span>)</a>
<a class="sourceLine" id="cb16-3" title="3"></a>
<a class="sourceLine" id="cb16-4" title="4">exp_summary_data<span class="op">$</span>SELECTION_METHOD &lt;-<span class="st"> </span><span class="kw">factor</span>(</a>
<a class="sourceLine" id="cb16-5" title="5">  exp_summary_data<span class="op">$</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb16-6" title="6">  <span class="dt">levels=</span><span class="kw">c</span>(</a>
<a class="sourceLine" id="cb16-7" title="7">    <span class="st">&quot;elite&quot;</span>,</a>
<a class="sourceLine" id="cb16-8" title="8">    <span class="st">&quot;elite-10&quot;</span>,</a>
<a class="sourceLine" id="cb16-9" title="9">    <span class="st">&quot;tournament&quot;</span>,</a>
<a class="sourceLine" id="cb16-10" title="10">    <span class="st">&quot;lexicase&quot;</span>,</a>
<a class="sourceLine" id="cb16-11" title="11">    <span class="st">&quot;non-dominated-elite&quot;</span>,</a>
<a class="sourceLine" id="cb16-12" title="12">    <span class="st">&quot;non-dominated-tournament&quot;</span>,</a>
<a class="sourceLine" id="cb16-13" title="13">    <span class="st">&quot;random&quot;</span>,</a>
<a class="sourceLine" id="cb16-14" title="14">    <span class="st">&quot;none&quot;</span></a>
<a class="sourceLine" id="cb16-15" title="15">  ),</a>
<a class="sourceLine" id="cb16-16" title="16">  <span class="dt">labels=</span><span class="kw">c</span>(</a>
<a class="sourceLine" id="cb16-17" title="17">    <span class="st">&quot;elite&quot;</span>,</a>
<a class="sourceLine" id="cb16-18" title="18">    <span class="st">&quot;elite-10&quot;</span>,</a>
<a class="sourceLine" id="cb16-19" title="19">    <span class="st">&quot;tourn&quot;</span>,</a>
<a class="sourceLine" id="cb16-20" title="20">    <span class="st">&quot;lex&quot;</span>,</a>
<a class="sourceLine" id="cb16-21" title="21">    <span class="st">&quot;nde&quot;</span>,</a>
<a class="sourceLine" id="cb16-22" title="22">    <span class="st">&quot;ndt&quot;</span>,</a>
<a class="sourceLine" id="cb16-23" title="23">    <span class="st">&quot;random&quot;</span>,</a>
<a class="sourceLine" id="cb16-24" title="24">    <span class="st">&quot;none&quot;</span></a>
<a class="sourceLine" id="cb16-25" title="25">  )</a>
<a class="sourceLine" id="cb16-26" title="26">)</a></code></pre></div>
<p>Load time series data.</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb17-1" title="1">time_series_data_loc &lt;-<span class="st"> </span><span class="kw">paste0</span>(working_directory,<span class="st">&quot;data/pop_snapshot_time_series_corrected.csv&quot;</span>)</a>
<a class="sourceLine" id="cb17-2" title="2">time_series_data &lt;-<span class="st"> </span><span class="kw">read.csv</span>(time_series_data_loc, <span class="dt">na.strings=</span><span class="st">&quot;NONE&quot;</span>)</a>
<a class="sourceLine" id="cb17-3" title="3"></a>
<a class="sourceLine" id="cb17-4" title="4">get_sel &lt;-<span class="st"> </span><span class="cf">function</span>(seed) {</a>
<a class="sourceLine" id="cb17-5" title="5">  <span class="kw">return</span>(<span class="kw">filter</span>(exp_summary_data, SEED<span class="op">==</span>seed)<span class="op">$</span>SELECTION_METHOD)</a>
<a class="sourceLine" id="cb17-6" title="6">}</a>
<a class="sourceLine" id="cb17-7" title="7"></a>
<a class="sourceLine" id="cb17-8" title="8">solution_evolved_fun &lt;-<span class="st"> </span><span class="cf">function</span>(seed, update) {</a>
<a class="sourceLine" id="cb17-9" title="9">  d &lt;-<span class="st"> </span><span class="kw">filter</span>(exp_summary_data, SEED<span class="op">==</span>seed)</a>
<a class="sourceLine" id="cb17-10" title="10">  <span class="kw">return</span>(update<span class="op">==</span>d<span class="op">$</span>update <span class="op">&amp;&amp;</span><span class="st"> </span>d<span class="op">$</span>max_fit_is_solution<span class="op">==</span><span class="st">&quot;1&quot;</span>);</a>
<a class="sourceLine" id="cb17-11" title="11">}</a>
<a class="sourceLine" id="cb17-12" title="12"></a>
<a class="sourceLine" id="cb17-13" title="13">time_series_data<span class="op">$</span>SELECTION_METHOD &lt;-<span class="st"> </span><span class="kw">mapply</span>(</a>
<a class="sourceLine" id="cb17-14" title="14">  get_sel,</a>
<a class="sourceLine" id="cb17-15" title="15">  time_series_data<span class="op">$</span>SEED</a>
<a class="sourceLine" id="cb17-16" title="16">)</a>
<a class="sourceLine" id="cb17-17" title="17"></a>
<a class="sourceLine" id="cb17-18" title="18">time_series_data<span class="op">$</span>solution_evolved &lt;-<span class="st"> </span><span class="kw">mapply</span>(</a>
<a class="sourceLine" id="cb17-19" title="19">  solution_evolved_fun,</a>
<a class="sourceLine" id="cb17-20" title="20">  time_series_data<span class="op">$</span>SEED,</a>
<a class="sourceLine" id="cb17-21" title="21">  time_series_data<span class="op">$</span>update</a>
<a class="sourceLine" id="cb17-22" title="22">)</a>
<a class="sourceLine" id="cb17-23" title="23"></a>
<a class="sourceLine" id="cb17-24" title="24">time_series_data<span class="op">$</span>SELECTION_METHOD &lt;-<span class="st"> </span><span class="kw">as.factor</span>(</a>
<a class="sourceLine" id="cb17-25" title="25">  time_series_data<span class="op">$</span>SELECTION_METHOD</a>
<a class="sourceLine" id="cb17-26" title="26">)</a>
<a class="sourceLine" id="cb17-27" title="27"></a>
<a class="sourceLine" id="cb17-28" title="28">exp_data_gen_<span class="dv">2000</span> &lt;-<span class="st"> </span><span class="kw">filter</span>(time_series_data, update<span class="op">==</span><span class="dv">2000</span>)</a></code></pre></div>
<p>Miscellaneous setup.</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb18-1" title="1"><span class="co"># Configure our default graphing theme</span></a>
<a class="sourceLine" id="cb18-2" title="2"><span class="kw">theme_set</span>(<span class="kw">theme_cowplot</span>())</a>
<a class="sourceLine" id="cb18-3" title="3"><span class="co"># Palette</span></a>
<a class="sourceLine" id="cb18-4" title="4">scale_fill_fun &lt;-<span class="st"> </span>scale_fill_bright</a>
<a class="sourceLine" id="cb18-5" title="5">scale_color_fun &lt;-<span class="st"> </span>scale_color_bright</a>
<a class="sourceLine" id="cb18-6" title="6"><span class="co"># Create a directory to store plots</span></a>
<a class="sourceLine" id="cb18-7" title="7">plot_directory &lt;-<span class="st"> </span><span class="kw">paste0</span>(working_directory, <span class="st">&quot;plots/&quot;</span>)</a>
<a class="sourceLine" id="cb18-8" title="8"><span class="kw">dir.create</span>(plot_directory, <span class="dt">showWarnings=</span><span class="ot">FALSE</span>)</a>
<a class="sourceLine" id="cb18-9" title="9"><span class="co"># Order selection schemes.</span></a>
<a class="sourceLine" id="cb18-10" title="10">selection_method_breaks &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;elite&quot;</span>, <span class="st">&quot;elite-10&quot;</span>, <span class="st">&quot;tourn&quot;</span>, <span class="st">&quot;lex&quot;</span>, <span class="st">&quot;nde&quot;</span>, <span class="st">&quot;random&quot;</span>, <span class="st">&quot;none&quot;</span>)</a>
<a class="sourceLine" id="cb18-11" title="11">selection_method_labels &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;ELITE&quot;</span>, <span class="st">&quot;TOP-10&quot;</span>, <span class="st">&quot;TOURN&quot;</span>, <span class="st">&quot;LEX&quot;</span>, <span class="st">&quot;NDE&quot;</span>, <span class="st">&quot;RAND&quot;</span>, <span class="st">&quot;NONE&quot;</span>)</a></code></pre></div>
</div>
<div id="number-of-successful-replicates" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.4</span> Number of successful replicates<a href="conventional-genetic-programming-experiment.html#number-of-successful-replicates" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>We considered a run to be successful if it produced a program capable of performing all 22 tasks during evaluation.</p>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb19-1" title="1"><span class="kw">ggplot</span>(</a>
<a class="sourceLine" id="cb19-2" title="2">    <span class="kw">filter</span>(exp_summary_data, max_fit_is_solution<span class="op">==</span><span class="st">&quot;1&quot;</span>),</a>
<a class="sourceLine" id="cb19-3" title="3">    <span class="kw">aes</span>(<span class="dt">x=</span>SELECTION_METHOD, <span class="dt">fill=</span>SELECTION_METHOD)</a>
<a class="sourceLine" id="cb19-4" title="4">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb19-5" title="5"><span class="st">  </span><span class="kw">geom_bar</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb19-6" title="6"><span class="st">  </span><span class="kw">geom_text</span>(</a>
<a class="sourceLine" id="cb19-7" title="7">    <span class="dt">stat=</span><span class="st">&quot;count&quot;</span>,</a>
<a class="sourceLine" id="cb19-8" title="8">    <span class="dt">mapping=</span><span class="kw">aes</span>(<span class="dt">label=</span>..count..),</a>
<a class="sourceLine" id="cb19-9" title="9">    <span class="dt">position=</span><span class="kw">position_dodge</span>(<span class="fl">0.9</span>),</a>
<a class="sourceLine" id="cb19-10" title="10">    <span class="dt">vjust=</span><span class="dv">0</span></a>
<a class="sourceLine" id="cb19-11" title="11">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb19-12" title="12"><span class="st">  </span><span class="kw">scale_y_continuous</span>(</a>
<a class="sourceLine" id="cb19-13" title="13">    <span class="dt">limits=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">50</span>),</a>
<a class="sourceLine" id="cb19-14" title="14">    <span class="dt">breaks=</span><span class="kw">seq</span>(<span class="dv">0</span>,<span class="dv">50</span>,<span class="dv">10</span>)</a>
<a class="sourceLine" id="cb19-15" title="15">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb19-16" title="16"><span class="st">  </span><span class="kw">scale_x_discrete</span>(</a>
<a class="sourceLine" id="cb19-17" title="17">    <span class="dt">name=</span><span class="st">&quot;Selection Method&quot;</span>,</a>
<a class="sourceLine" id="cb19-18" title="18">    <span class="dt">limits=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb19-19" title="19">    <span class="dt">breaks=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb19-20" title="20">    <span class="dt">labels=</span>selection_method_labels</a>
<a class="sourceLine" id="cb19-21" title="21">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb19-22" title="22"><span class="st">  </span><span class="kw">scale_fill_fun</span>(</a>
<a class="sourceLine" id="cb19-23" title="23">    <span class="dt">limits=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb19-24" title="24">    <span class="dt">breaks=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb19-25" title="25">    <span class="dt">labels=</span>selection_method_labels</a>
<a class="sourceLine" id="cb19-26" title="26">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb19-27" title="27"><span class="st">  </span><span class="kw">scale_color_fun</span>(</a>
<a class="sourceLine" id="cb19-28" title="28">    <span class="dt">limits=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb19-29" title="29">    <span class="dt">breaks=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb19-30" title="30">    <span class="dt">labels=</span>selection_method_labels</a>
<a class="sourceLine" id="cb19-31" title="31">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb19-32" title="32"><span class="st">  </span><span class="kw">ylab</span>(<span class="st">&quot;Successful replicates&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb19-33" title="33"><span class="st">  </span><span class="kw">theme</span>(<span class="dt">legend.position =</span> <span class="st">&quot;none&quot;</span>)</a></code></pre></div>
<p><img src="supplemental-material_files/figure-html/unnamed-chunk-7-1.png" width="672" /></p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb20-1" title="1"><span class="kw">ggsave</span>(</a>
<a class="sourceLine" id="cb20-2" title="2">  <span class="kw">paste0</span>(plot_directory, <span class="st">&quot;2021-11-15-num-solutions.pdf&quot;</span>)</a>
<a class="sourceLine" id="cb20-3" title="3">)</a></code></pre></div>
<pre><code>## Saving 7 x 5 in image</code></pre>
</div>
<div id="final-task-coverage" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.5</span> Final task coverage<a href="conventional-genetic-programming-experiment.html#final-task-coverage" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Task coverage after 55,000 generations of evolution.</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb22-1" title="1">max_task_cov_fig &lt;-</a>
<a class="sourceLine" id="cb22-2" title="2"><span class="st">  </span><span class="kw">ggplot</span>(</a>
<a class="sourceLine" id="cb22-3" title="3">    exp_summary_data,</a>
<a class="sourceLine" id="cb22-4" title="4">    <span class="kw">aes</span>(</a>
<a class="sourceLine" id="cb22-5" title="5">      <span class="dt">x=</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb22-6" title="6">      <span class="dt">y=</span>max_fit_aggregate_score,</a>
<a class="sourceLine" id="cb22-7" title="7">      <span class="dt">fill=</span>SELECTION_METHOD</a>
<a class="sourceLine" id="cb22-8" title="8">    )</a>
<a class="sourceLine" id="cb22-9" title="9">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-10" title="10"><span class="st">  </span><span class="kw">geom_flat_violin</span>(</a>
<a class="sourceLine" id="cb22-11" title="11">    <span class="dt">position =</span> <span class="kw">position_nudge</span>(<span class="dt">x =</span> <span class="fl">.2</span>, <span class="dt">y =</span> <span class="dv">0</span>),</a>
<a class="sourceLine" id="cb22-12" title="12">    <span class="dt">alpha =</span> <span class="fl">.8</span>,</a>
<a class="sourceLine" id="cb22-13" title="13">    <span class="dt">adjust=</span><span class="fl">1.5</span></a>
<a class="sourceLine" id="cb22-14" title="14">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-15" title="15"><span class="st">  </span><span class="kw">geom_point</span>(</a>
<a class="sourceLine" id="cb22-16" title="16">    <span class="dt">mapping=</span><span class="kw">aes</span>(<span class="dt">color=</span>SELECTION_METHOD),</a>
<a class="sourceLine" id="cb22-17" title="17">    <span class="dt">position =</span> <span class="kw">position_jitter</span>(<span class="dt">width =</span> <span class="fl">.15</span>),</a>
<a class="sourceLine" id="cb22-18" title="18">    <span class="dt">size =</span> <span class="fl">.5</span>,</a>
<a class="sourceLine" id="cb22-19" title="19">    <span class="dt">alpha =</span> <span class="fl">0.8</span></a>
<a class="sourceLine" id="cb22-20" title="20">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-21" title="21"><span class="st">  </span><span class="kw">geom_boxplot</span>(</a>
<a class="sourceLine" id="cb22-22" title="22">    <span class="dt">width =</span> <span class="fl">.1</span>,</a>
<a class="sourceLine" id="cb22-23" title="23">    <span class="dt">outlier.shape =</span> <span class="ot">NA</span>,</a>
<a class="sourceLine" id="cb22-24" title="24">    <span class="dt">alpha =</span> <span class="fl">0.5</span></a>
<a class="sourceLine" id="cb22-25" title="25">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-26" title="26"><span class="st">  </span><span class="kw">scale_y_continuous</span>(</a>
<a class="sourceLine" id="cb22-27" title="27">    <span class="dt">name=</span><span class="st">&quot;Task Coverage&quot;</span>,</a>
<a class="sourceLine" id="cb22-28" title="28">    <span class="dt">limits=</span><span class="kw">c</span>(<span class="op">-</span><span class="fl">0.5</span>,<span class="fl">22.5</span>),</a>
<a class="sourceLine" id="cb22-29" title="29">    <span class="dt">breaks=</span><span class="kw">seq</span>(<span class="dv">0</span>,<span class="dv">22</span>,<span class="dv">2</span>)</a>
<a class="sourceLine" id="cb22-30" title="30">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-31" title="31"><span class="st">  </span><span class="kw">scale_x_discrete</span>(</a>
<a class="sourceLine" id="cb22-32" title="32">    <span class="dt">name=</span><span class="st">&quot;Selection Method&quot;</span>,</a>
<a class="sourceLine" id="cb22-33" title="33">    <span class="dt">breaks=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb22-34" title="34">    <span class="dt">labels=</span>selection_method_labels</a>
<a class="sourceLine" id="cb22-35" title="35">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-36" title="36"><span class="st">  </span><span class="kw">scale_fill_fun</span>(</a>
<a class="sourceLine" id="cb22-37" title="37">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-38" title="38"><span class="st">  </span><span class="kw">scale_color_fun</span>(</a>
<a class="sourceLine" id="cb22-39" title="39">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb22-40" title="40"><span class="st">  </span><span class="kw">theme</span>(</a>
<a class="sourceLine" id="cb22-41" title="41">    <span class="dt">legend.position=</span><span class="st">&quot;none&quot;</span></a>
<a class="sourceLine" id="cb22-42" title="42">    <span class="co"># axis.text = element_text(size = 8),</span></a>
<a class="sourceLine" id="cb22-43" title="43">    <span class="co"># axis.title = element_text(size=10)</span></a>
<a class="sourceLine" id="cb22-44" title="44">  )</a>
<a class="sourceLine" id="cb22-45" title="45">max_task_cov_fig</a></code></pre></div>
<p><img src="supplemental-material_files/figure-html/unnamed-chunk-8-1.png" width="672" /></p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb23-1" title="1"><span class="kw">ggsave</span>(</a>
<a class="sourceLine" id="cb23-2" title="2">  <span class="dt">plot=</span>max_task_cov_fig,</a>
<a class="sourceLine" id="cb23-3" title="3">  <span class="dt">filename=</span><span class="kw">paste0</span>(plot_directory, <span class="st">&quot;2021-11-15-ec-performance.pdf&quot;</span>),</a>
<a class="sourceLine" id="cb23-4" title="4">  <span class="dt">height=</span><span class="dv">3</span>,</a>
<a class="sourceLine" id="cb23-5" title="5">  <span class="dt">width=</span><span class="dv">4</span></a>
<a class="sourceLine" id="cb23-6" title="6">)</a></code></pre></div>
<p>Statistical results:</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb24-1" title="1"><span class="kw">kruskal.test</span>(</a>
<a class="sourceLine" id="cb24-2" title="2">  <span class="dt">formula=</span>max_fit_aggregate_score<span class="op">~</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb24-3" title="3">  <span class="dt">data=</span>exp_summary_data</a>
<a class="sourceLine" id="cb24-4" title="4">)</a></code></pre></div>
<pre><code>## 
##  Kruskal-Wallis rank sum test
## 
## data:  max_fit_aggregate_score by SELECTION_METHOD
## Kruskal-Wallis chi-squared = 332.52, df = 6, p-value &lt; 2.2e-16</code></pre>
<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb26-1" title="1"><span class="co"># Kruskal-wallis is significant, so we do a post-hoc wilcoxon rank-sum.</span></a>
<a class="sourceLine" id="cb26-2" title="2"><span class="kw">pairwise.wilcox.test</span>(</a>
<a class="sourceLine" id="cb26-3" title="3">  <span class="dt">x=</span>exp_summary_data<span class="op">$</span>max_fit_aggregate_score,</a>
<a class="sourceLine" id="cb26-4" title="4">  <span class="dt">g=</span>exp_summary_data<span class="op">$</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb26-5" title="5">  <span class="dt">p.adjust.method=</span><span class="st">&quot;bonferroni&quot;</span>,</a>
<a class="sourceLine" id="cb26-6" title="6">)</a></code></pre></div>
<pre><code>## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  exp_summary_data$max_fit_aggregate_score and exp_summary_data$SELECTION_METHOD 
## 
##          elite   elite-10 tourn   lex     nde     random
## elite-10 0.0087  -        -       -       -       -     
## tourn    1.8e-14 &lt; 2e-16  -       -       -       -     
## lex      &lt; 2e-16 &lt; 2e-16  &lt; 2e-16 -       -       -     
## nde      &lt; 2e-16 &lt; 2e-16  1.7e-15 &lt; 2e-16 -       -     
## random   &lt; 2e-16 &lt; 2e-16  &lt; 2e-16 &lt; 2e-16 &lt; 2e-16 -     
## none     &lt; 2e-16 &lt; 2e-16  &lt; 2e-16 &lt; 2e-16 &lt; 2e-16 0.8360
## 
## P value adjustment method: bonferroni</code></pre>
</div>
<div id="generation-2000-task-coverage" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.6</span> Generation 2,000 task coverage<a href="conventional-genetic-programming-experiment.html#generation-2000-task-coverage" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Task coverage after 2,000 generations (i.e., the number of cycles runin the directed evolution experiments)</p>
<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb28-1" title="1"><span class="kw">ggplot</span>(</a>
<a class="sourceLine" id="cb28-2" title="2">    exp_data_gen_<span class="dv">2000</span>,</a>
<a class="sourceLine" id="cb28-3" title="3">    <span class="kw">aes</span>(</a>
<a class="sourceLine" id="cb28-4" title="4">      <span class="dt">x=</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb28-5" title="5">      <span class="dt">y=</span>max_org_task_coverage,</a>
<a class="sourceLine" id="cb28-6" title="6">      <span class="dt">fill=</span>SELECTION_METHOD</a>
<a class="sourceLine" id="cb28-7" title="7">    )</a>
<a class="sourceLine" id="cb28-8" title="8">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb28-9" title="9"><span class="st">  </span><span class="kw">geom_flat_violin</span>(</a>
<a class="sourceLine" id="cb28-10" title="10">    <span class="dt">position =</span> <span class="kw">position_nudge</span>(<span class="dt">x =</span> <span class="fl">.2</span>, <span class="dt">y =</span> <span class="dv">0</span>),</a>
<a class="sourceLine" id="cb28-11" title="11">    <span class="dt">alpha =</span> <span class="fl">.8</span>,</a>
<a class="sourceLine" id="cb28-12" title="12">    <span class="dt">adjust=</span><span class="fl">1.5</span></a>
<a class="sourceLine" id="cb28-13" title="13">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb28-14" title="14"><span class="st">  </span><span class="kw">geom_point</span>(</a>
<a class="sourceLine" id="cb28-15" title="15">    <span class="dt">mapping=</span><span class="kw">aes</span>(<span class="dt">color=</span>SELECTION_METHOD),</a>
<a class="sourceLine" id="cb28-16" title="16">    <span class="dt">position =</span> <span class="kw">position_jitter</span>(<span class="dt">width =</span> <span class="fl">.15</span>),</a>
<a class="sourceLine" id="cb28-17" title="17">    <span class="dt">size =</span> <span class="fl">.5</span>,</a>
<a class="sourceLine" id="cb28-18" title="18">    <span class="dt">alpha =</span> <span class="fl">0.8</span></a>
<a class="sourceLine" id="cb28-19" title="19">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb28-20" title="20"><span class="st">  </span><span class="kw">geom_boxplot</span>(</a>
<a class="sourceLine" id="cb28-21" title="21">    <span class="dt">width =</span> <span class="fl">.1</span>,</a>
<a class="sourceLine" id="cb28-22" title="22">    <span class="dt">outlier.shape =</span> <span class="ot">NA</span>,</a>
<a class="sourceLine" id="cb28-23" title="23">    <span class="dt">alpha =</span> <span class="fl">0.5</span></a>
<a class="sourceLine" id="cb28-24" title="24">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb28-25" title="25"><span class="st">  </span><span class="kw">scale_y_continuous</span>(</a>
<a class="sourceLine" id="cb28-26" title="26">    <span class="dt">name=</span><span class="st">&quot;Task Coverage&quot;</span>,</a>
<a class="sourceLine" id="cb28-27" title="27">    <span class="dt">limits=</span><span class="kw">c</span>(<span class="op">-</span><span class="fl">0.5</span>,<span class="fl">22.5</span>),</a>
<a class="sourceLine" id="cb28-28" title="28">    <span class="dt">breaks=</span><span class="kw">seq</span>(<span class="dv">0</span>,<span class="dv">22</span>,<span class="dv">2</span>)</a>
<a class="sourceLine" id="cb28-29" title="29">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb28-30" title="30"><span class="st">  </span><span class="kw">scale_x_discrete</span>(</a>
<a class="sourceLine" id="cb28-31" title="31">    <span class="dt">name=</span><span class="st">&quot;Selection Method&quot;</span>,</a>
<a class="sourceLine" id="cb28-32" title="32">    <span class="dt">breaks=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb28-33" title="33">    <span class="dt">labels=</span>selection_method_labels</a>
<a class="sourceLine" id="cb28-34" title="34">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb28-35" title="35"><span class="st">  </span><span class="kw">scale_fill_fun</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb28-36" title="36"><span class="st">  </span><span class="kw">scale_color_fun</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb28-37" title="37"><span class="st">  </span><span class="kw">theme</span>(</a>
<a class="sourceLine" id="cb28-38" title="38">    <span class="dt">legend.position=</span><span class="st">&quot;none&quot;</span>,</a>
<a class="sourceLine" id="cb28-39" title="39">    <span class="dt">axis.text =</span> <span class="kw">element_text</span>(<span class="dt">size =</span> <span class="dv">8</span>),</a>
<a class="sourceLine" id="cb28-40" title="40">    <span class="dt">axis.title =</span> <span class="kw">element_text</span>(<span class="dt">size=</span><span class="dv">10</span>)</a>
<a class="sourceLine" id="cb28-41" title="41">  )</a></code></pre></div>
<p><img src="supplemental-material_files/figure-html/unnamed-chunk-10-1.png" width="672" /></p>
<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb29-1" title="1"><span class="kw">ggsave</span>(</a>
<a class="sourceLine" id="cb29-2" title="2">  <span class="dt">filename=</span><span class="kw">paste0</span>(plot_directory, <span class="st">&quot;max_aggregate_score_gen_2000.pdf&quot;</span>),</a>
<a class="sourceLine" id="cb29-3" title="3">  <span class="dt">height=</span><span class="dv">3</span>,</a>
<a class="sourceLine" id="cb29-4" title="4">  <span class="dt">width=</span><span class="dv">4</span></a>
<a class="sourceLine" id="cb29-5" title="5">)</a></code></pre></div>
<p>Statistical results:</p>
<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb30-1" title="1"><span class="kw">kruskal.test</span>(</a>
<a class="sourceLine" id="cb30-2" title="2">  <span class="dt">formula=</span>max_org_task_coverage<span class="op">~</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb30-3" title="3">  <span class="dt">data=</span>exp_data_gen_<span class="dv">2000</span></a>
<a class="sourceLine" id="cb30-4" title="4">)</a></code></pre></div>
<pre><code>## 
##  Kruskal-Wallis rank sum test
## 
## data:  max_org_task_coverage by SELECTION_METHOD
## Kruskal-Wallis chi-squared = 322.54, df = 6, p-value &lt; 2.2e-16</code></pre>
<div class="sourceCode" id="cb32"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb32-1" title="1"><span class="co"># Kruskal-wallis is significant, so we do a post-hoc wilcoxon rank-sum.</span></a>
<a class="sourceLine" id="cb32-2" title="2"><span class="kw">pairwise.wilcox.test</span>(</a>
<a class="sourceLine" id="cb32-3" title="3">  <span class="dt">x=</span>exp_data_gen_<span class="dv">2000</span><span class="op">$</span>max_org_task_coverage,</a>
<a class="sourceLine" id="cb32-4" title="4">  <span class="dt">g=</span>exp_data_gen_<span class="dv">2000</span><span class="op">$</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb32-5" title="5">  <span class="dt">p.adjust.method=</span><span class="st">&quot;bonferroni&quot;</span>,</a>
<a class="sourceLine" id="cb32-6" title="6">)</a></code></pre></div>
<pre><code>## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  exp_data_gen_2000$max_org_task_coverage and exp_data_gen_2000$SELECTION_METHOD 
## 
##          elite   elite-10 tourn   lex     nde     random
## elite-10 1.4e-09 -        -       -       -       -     
## tourn    0.0013  1.9e-14  -       -       -       -     
## lex      &lt; 2e-16 7.3e-15  &lt; 2e-16 -       -       -     
## nde      9.8e-14 2.3e-16  2.7e-11 &lt; 2e-16 -       -     
## random   &lt; 2e-16 &lt; 2e-16  &lt; 2e-16 &lt; 2e-16 &lt; 2e-16 -     
## none     &lt; 2e-16 &lt; 2e-16  &lt; 2e-16 &lt; 2e-16 &lt; 2e-16 1.0000
## 
## P value adjustment method: bonferroni</code></pre>
</div>
<div id="population-level-task-coverage" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.7</span> Population-level task coverage<a href="conventional-genetic-programming-experiment.html#population-level-task-coverage" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Task coverage across entire population after 55,000 generations of evolution.</p>
<div class="sourceCode" id="cb34"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb34-1" title="1"><span class="kw">ggplot</span>(</a>
<a class="sourceLine" id="cb34-2" title="2">    exp_summary_data,</a>
<a class="sourceLine" id="cb34-3" title="3">    <span class="kw">aes</span>(</a>
<a class="sourceLine" id="cb34-4" title="4">      <span class="dt">x=</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb34-5" title="5">      <span class="dt">y=</span>population_num_tasks_covered,</a>
<a class="sourceLine" id="cb34-6" title="6">      <span class="dt">fill=</span>SELECTION_METHOD</a>
<a class="sourceLine" id="cb34-7" title="7">    )</a>
<a class="sourceLine" id="cb34-8" title="8">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb34-9" title="9"><span class="st">  </span><span class="kw">geom_flat_violin</span>(</a>
<a class="sourceLine" id="cb34-10" title="10">    <span class="dt">position =</span> <span class="kw">position_nudge</span>(<span class="dt">x =</span> <span class="fl">.2</span>, <span class="dt">y =</span> <span class="dv">0</span>),</a>
<a class="sourceLine" id="cb34-11" title="11">    <span class="dt">alpha =</span> <span class="fl">.8</span></a>
<a class="sourceLine" id="cb34-12" title="12">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb34-13" title="13"><span class="st">  </span><span class="kw">geom_point</span>(</a>
<a class="sourceLine" id="cb34-14" title="14">    <span class="dt">mapping=</span><span class="kw">aes</span>(<span class="dt">color=</span>SELECTION_METHOD),</a>
<a class="sourceLine" id="cb34-15" title="15">    <span class="dt">position =</span> <span class="kw">position_jitter</span>(<span class="dt">width =</span> <span class="fl">.15</span>),</a>
<a class="sourceLine" id="cb34-16" title="16">    <span class="dt">size =</span> <span class="fl">.5</span>,</a>
<a class="sourceLine" id="cb34-17" title="17">    <span class="dt">alpha =</span> <span class="fl">0.8</span></a>
<a class="sourceLine" id="cb34-18" title="18">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb34-19" title="19"><span class="st">  </span><span class="kw">geom_boxplot</span>(</a>
<a class="sourceLine" id="cb34-20" title="20">    <span class="dt">width =</span> <span class="fl">.1</span>,</a>
<a class="sourceLine" id="cb34-21" title="21">    <span class="dt">outlier.shape =</span> <span class="ot">NA</span>,</a>
<a class="sourceLine" id="cb34-22" title="22">    <span class="dt">alpha =</span> <span class="fl">0.5</span></a>
<a class="sourceLine" id="cb34-23" title="23">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb34-24" title="24"><span class="st">  </span><span class="kw">scale_fill_fun</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb34-25" title="25"><span class="st">  </span><span class="kw">scale_color_fun</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb34-26" title="26"><span class="st">  </span><span class="kw">theme</span>(</a>
<a class="sourceLine" id="cb34-27" title="27">    <span class="dt">legend.position=</span><span class="st">&quot;none&quot;</span></a>
<a class="sourceLine" id="cb34-28" title="28">  )</a></code></pre></div>
<p><img src="supplemental-material_files/figure-html/unnamed-chunk-12-1.png" width="672" /></p>
<div class="sourceCode" id="cb35"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb35-1" title="1"><span class="kw">ggsave</span>(</a>
<a class="sourceLine" id="cb35-2" title="2">  <span class="kw">paste0</span>(plot_directory, <span class="st">&quot;population_num_tasks_covered.pdf&quot;</span>)</a>
<a class="sourceLine" id="cb35-3" title="3">)</a></code></pre></div>
<pre><code>## Saving 7 x 5 in image</code></pre>
</div>
<div id="generations-elapsed-before-a-solution-evolves" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.8</span> Generations elapsed before a solution evolves<a href="conventional-genetic-programming-experiment.html#generations-elapsed-before-a-solution-evolves" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Runs where no solution evolved are in gray and plotted as “unsolved”.</p>
<div class="sourceCode" id="cb37"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb37-1" title="1">unfinished_data &lt;-<span class="st"> </span><span class="kw">filter</span>(exp_summary_data, max_fit_is_solution<span class="op">==</span><span class="st">&quot;0&quot;</span>)</a>
<a class="sourceLine" id="cb37-2" title="2">unfinished_data<span class="op">$</span>graph_update &lt;-<span class="st"> </span><span class="dv">60000</span></a>
<a class="sourceLine" id="cb37-3" title="3"></a>
<a class="sourceLine" id="cb37-4" title="4"><span class="kw">ggplot</span>(</a>
<a class="sourceLine" id="cb37-5" title="5">    <span class="kw">filter</span>(exp_summary_data, max_fit_is_solution<span class="op">==</span><span class="st">&quot;1&quot;</span>),</a>
<a class="sourceLine" id="cb37-6" title="6">    <span class="kw">aes</span>(</a>
<a class="sourceLine" id="cb37-7" title="7">      <span class="dt">x=</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb37-8" title="8">      <span class="dt">y=</span>update</a>
<a class="sourceLine" id="cb37-9" title="9">    )</a>
<a class="sourceLine" id="cb37-10" title="10">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb37-11" title="11"><span class="st">  </span><span class="kw">geom_flat_violin</span>(</a>
<a class="sourceLine" id="cb37-12" title="12">    <span class="dt">position =</span> <span class="kw">position_nudge</span>(<span class="dt">x =</span> <span class="fl">.2</span>, <span class="dt">y =</span> <span class="dv">0</span>),</a>
<a class="sourceLine" id="cb37-13" title="13">    <span class="dt">alpha =</span> <span class="fl">.8</span></a>
<a class="sourceLine" id="cb37-14" title="14">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb37-15" title="15"><span class="st">  </span><span class="kw">geom_point</span>(</a>
<a class="sourceLine" id="cb37-16" title="16">    <span class="dt">position =</span> <span class="kw">position_jitter</span>(<span class="dt">width =</span> <span class="fl">.15</span>),</a>
<a class="sourceLine" id="cb37-17" title="17">    <span class="dt">size =</span> <span class="fl">.5</span>,</a>
<a class="sourceLine" id="cb37-18" title="18">    <span class="dt">alpha =</span> <span class="fl">0.8</span></a>
<a class="sourceLine" id="cb37-19" title="19">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb37-20" title="20"><span class="st">  </span><span class="kw">geom_point</span>(</a>
<a class="sourceLine" id="cb37-21" title="21">    <span class="dt">data =</span> unfinished_data,</a>
<a class="sourceLine" id="cb37-22" title="22">    <span class="dt">mapping=</span><span class="kw">aes</span>(</a>
<a class="sourceLine" id="cb37-23" title="23">      <span class="dt">x=</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb37-24" title="24">      <span class="dt">y=</span>graph_update</a>
<a class="sourceLine" id="cb37-25" title="25">    ),</a>
<a class="sourceLine" id="cb37-26" title="26">    <span class="dt">color=</span><span class="st">&quot;gray&quot;</span>,</a>
<a class="sourceLine" id="cb37-27" title="27">    <span class="dt">position =</span> <span class="kw">position_jitter</span>(<span class="dt">width =</span> <span class="fl">.15</span>, <span class="dt">height=</span><span class="dv">1000</span>),</a>
<a class="sourceLine" id="cb37-28" title="28">    <span class="dt">size =</span> <span class="fl">.5</span>,</a>
<a class="sourceLine" id="cb37-29" title="29">    <span class="dt">alpha =</span> <span class="fl">0.8</span></a>
<a class="sourceLine" id="cb37-30" title="30">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb37-31" title="31"><span class="st">  </span><span class="kw">geom_boxplot</span>(</a>
<a class="sourceLine" id="cb37-32" title="32">    <span class="dt">width =</span> <span class="fl">.1</span>,</a>
<a class="sourceLine" id="cb37-33" title="33">    <span class="dt">outlier.shape =</span> <span class="ot">NA</span>,</a>
<a class="sourceLine" id="cb37-34" title="34">    <span class="dt">alpha =</span> <span class="fl">0.5</span></a>
<a class="sourceLine" id="cb37-35" title="35">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb37-36" title="36"><span class="st">  </span><span class="kw">scale_y_continuous</span>(</a>
<a class="sourceLine" id="cb37-37" title="37">    <span class="dt">name=</span><span class="st">&quot;Generation first solution evolved&quot;</span>,</a>
<a class="sourceLine" id="cb37-38" title="38">    <span class="dt">limits=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">65000</span>),</a>
<a class="sourceLine" id="cb37-39" title="39">    <span class="dt">breaks=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">10000</span>, <span class="dv">20000</span>, <span class="dv">30000</span>, <span class="dv">40000</span>, <span class="dv">50000</span>, <span class="dv">60000</span>),</a>
<a class="sourceLine" id="cb37-40" title="40">    <span class="dt">labels=</span><span class="kw">c</span>(<span class="st">&quot;0&quot;</span>, <span class="st">&quot;10000&quot;</span>, <span class="st">&quot;20000&quot;</span>, <span class="st">&quot;30000&quot;</span>, <span class="st">&quot;40000&quot;</span>, <span class="st">&quot;50000&quot;</span>, <span class="st">&quot;Unsolved&quot;</span>)</a>
<a class="sourceLine" id="cb37-41" title="41">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb37-42" title="42"><span class="st">  </span><span class="kw">theme</span>(</a>
<a class="sourceLine" id="cb37-43" title="43">    <span class="dt">legend.position=</span><span class="st">&quot;none&quot;</span></a>
<a class="sourceLine" id="cb37-44" title="44">  )</a></code></pre></div>
<pre><code>## Warning: Groups with fewer than two data points have been dropped.</code></pre>
<p><img src="supplemental-material_files/figure-html/unnamed-chunk-13-1.png" width="672" /></p>
<div class="sourceCode" id="cb39"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb39-1" title="1"><span class="kw">ggsave</span>(</a>
<a class="sourceLine" id="cb39-2" title="2">  <span class="kw">paste0</span>(plot_directory, <span class="st">&quot;updates_until_solution.pdf&quot;</span>)</a>
<a class="sourceLine" id="cb39-3" title="3">)</a></code></pre></div>
<pre><code>## Saving 7 x 5 in image</code></pre>
<pre><code>## Warning: Groups with fewer than two data points have been dropped.</code></pre>
</div>
<div id="best-task-coverage-over-time" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.9</span> Best task coverage over time<a href="conventional-genetic-programming-experiment.html#best-task-coverage-over-time" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<div class="sourceCode" id="cb42"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb42-1" title="1">max_task_cov_ts &lt;-</a>
<a class="sourceLine" id="cb42-2" title="2"><span class="st">  </span><span class="kw">ggplot</span>(</a>
<a class="sourceLine" id="cb42-3" title="3">    time_series_data,</a>
<a class="sourceLine" id="cb42-4" title="4">    <span class="kw">aes</span>(</a>
<a class="sourceLine" id="cb42-5" title="5">      <span class="dt">x=</span>update,</a>
<a class="sourceLine" id="cb42-6" title="6">      <span class="dt">y=</span>max_org_task_coverage,</a>
<a class="sourceLine" id="cb42-7" title="7">      <span class="dt">fill=</span>SELECTION_METHOD,</a>
<a class="sourceLine" id="cb42-8" title="8">      <span class="dt">color=</span>SELECTION_METHOD</a>
<a class="sourceLine" id="cb42-9" title="9">    )</a>
<a class="sourceLine" id="cb42-10" title="10">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb42-11" title="11"><span class="st">  </span><span class="kw">stat_summary</span>(<span class="dt">geom=</span><span class="st">&quot;line&quot;</span>, <span class="dt">fun=</span>mean) <span class="op">+</span></a>
<a class="sourceLine" id="cb42-12" title="12"><span class="st">  </span><span class="kw">stat_summary</span>(</a>
<a class="sourceLine" id="cb42-13" title="13">    <span class="dt">geom=</span><span class="st">&quot;ribbon&quot;</span>,</a>
<a class="sourceLine" id="cb42-14" title="14">    <span class="dt">fun.data=</span><span class="st">&quot;mean_cl_boot&quot;</span>,</a>
<a class="sourceLine" id="cb42-15" title="15">    <span class="dt">fun.args=</span><span class="kw">list</span>(<span class="dt">conf.int=</span><span class="fl">0.95</span>),</a>
<a class="sourceLine" id="cb42-16" title="16">    <span class="dt">alpha=</span><span class="fl">0.2</span>,</a>
<a class="sourceLine" id="cb42-17" title="17">    <span class="dt">linetype=</span><span class="dv">0</span></a>
<a class="sourceLine" id="cb42-18" title="18">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb42-19" title="19"><span class="st">  </span><span class="kw">scale_y_continuous</span>(</a>
<a class="sourceLine" id="cb42-20" title="20">    <span class="dt">name=</span><span class="st">&quot;Task Coverage&quot;</span>,</a>
<a class="sourceLine" id="cb42-21" title="21">    <span class="dt">limits=</span><span class="kw">c</span>(<span class="op">-</span><span class="fl">0.5</span>,<span class="fl">22.5</span>),</a>
<a class="sourceLine" id="cb42-22" title="22">    <span class="dt">breaks=</span><span class="kw">seq</span>(<span class="dv">0</span>,<span class="dv">22</span>,<span class="dv">2</span>)</a>
<a class="sourceLine" id="cb42-23" title="23">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb42-24" title="24"><span class="st">  </span><span class="kw">scale_x_continuous</span>(</a>
<a class="sourceLine" id="cb42-25" title="25">    <span class="dt">name=</span><span class="st">&quot;Generation&quot;</span>,</a>
<a class="sourceLine" id="cb42-26" title="26">    <span class="dt">limits=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">55000</span>),</a>
<a class="sourceLine" id="cb42-27" title="27">    <span class="dt">breaks=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">10000</span>, <span class="dv">20000</span>, <span class="dv">30000</span>, <span class="dv">40000</span>, <span class="dv">50000</span>)</a>
<a class="sourceLine" id="cb42-28" title="28">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb42-29" title="29"><span class="st">  </span><span class="kw">scale_fill_fun</span>(</a>
<a class="sourceLine" id="cb42-30" title="30">    <span class="dt">name=</span><span class="st">&quot;Selection method&quot;</span>,</a>
<a class="sourceLine" id="cb42-31" title="31">    <span class="dt">breaks=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb42-32" title="32">    <span class="dt">labels=</span>selection_method_labels</a>
<a class="sourceLine" id="cb42-33" title="33">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb42-34" title="34"><span class="st">  </span><span class="kw">scale_color_fun</span>(</a>
<a class="sourceLine" id="cb42-35" title="35">    <span class="dt">name=</span><span class="st">&quot;Selection method&quot;</span>,</a>
<a class="sourceLine" id="cb42-36" title="36">    <span class="dt">breaks=</span>selection_method_breaks,</a>
<a class="sourceLine" id="cb42-37" title="37">    <span class="dt">labels=</span>selection_method_labels</a>
<a class="sourceLine" id="cb42-38" title="38">  ) <span class="op">+</span></a>
<a class="sourceLine" id="cb42-39" title="39"><span class="st">  </span><span class="kw">theme</span>(</a>
<a class="sourceLine" id="cb42-40" title="40">    <span class="dt">legend.position=</span><span class="st">&quot;none&quot;</span></a>
<a class="sourceLine" id="cb42-41" title="41">  )</a>
<a class="sourceLine" id="cb42-42" title="42">max_task_cov_ts</a></code></pre></div>
<pre><code>## Warning: Computation failed in `stat_summary()`:</code></pre>
<p><img src="supplemental-material_files/figure-html/unnamed-chunk-14-1.png" width="672" /></p>
<div class="sourceCode" id="cb44"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb44-1" title="1"><span class="kw">ggsave</span>(</a>
<a class="sourceLine" id="cb44-2" title="2">  <span class="kw">paste0</span>(plot_directory, <span class="st">&quot;2021-11-15-ec-performance-ts.pdf&quot;</span>)</a>
<a class="sourceLine" id="cb44-3" title="3">)</a></code></pre></div>
<pre><code>## Saving 7 x 5 in image</code></pre>
<pre><code>## Warning: Computation failed in `stat_summary()`:</code></pre>
</div>
<div id="manuscript-figure" class="section level2 hasAnchor">
<h2><span class="header-section-number">6.10</span> Manuscript Figure<a href="conventional-genetic-programming-experiment.html#manuscript-figure" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<div class="sourceCode" id="cb47"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb47-1" title="1">legend &lt;-<span class="st"> </span>cowplot<span class="op">::</span><span class="kw">get_legend</span>(</a>
<a class="sourceLine" id="cb47-2" title="2">    max_task_cov_ts <span class="op">+</span></a>
<a class="sourceLine" id="cb47-3" title="3"><span class="st">      </span><span class="kw">guides</span>(</a>
<a class="sourceLine" id="cb47-4" title="4">        <span class="dt">color=</span><span class="kw">guide_legend</span>(<span class="dt">nrow=</span><span class="dv">1</span>),</a>
<a class="sourceLine" id="cb47-5" title="5">        <span class="dt">fill=</span><span class="kw">guide_legend</span>(<span class="dt">nrow=</span><span class="dv">1</span>)</a>
<a class="sourceLine" id="cb47-6" title="6">      ) <span class="op">+</span></a>
<a class="sourceLine" id="cb47-7" title="7"><span class="st">      </span><span class="kw">theme</span>(</a>
<a class="sourceLine" id="cb47-8" title="8">        <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>,</a>
<a class="sourceLine" id="cb47-9" title="9">        <span class="dt">legend.box=</span><span class="st">&quot;horizontal&quot;</span>,</a>
<a class="sourceLine" id="cb47-10" title="10">        <span class="dt">legend.justification=</span><span class="st">&quot;center&quot;</span></a>
<a class="sourceLine" id="cb47-11" title="11">      )</a>
<a class="sourceLine" id="cb47-12" title="12">  )</a></code></pre></div>
<pre><code>## Warning: Computation failed in `stat_summary()`:</code></pre>
<div class="sourceCode" id="cb49"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb49-1" title="1">grid &lt;-<span class="st"> </span><span class="kw">plot_grid</span>(</a>
<a class="sourceLine" id="cb49-2" title="2">  max_task_cov_ts <span class="op">+</span></a>
<a class="sourceLine" id="cb49-3" title="3"><span class="st">    </span><span class="kw">ggtitle</span>(<span class="st">&quot;Task coverage over time&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb49-4" title="4"><span class="st">    </span><span class="kw">labs</span>(<span class="dt">subtitle=</span><span class="st">&quot;&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb49-5" title="5"><span class="st">    </span><span class="kw">theme</span>(<span class="dt">legend.position=</span><span class="st">&quot;none&quot;</span>),</a>
<a class="sourceLine" id="cb49-6" title="6">  max_task_cov_fig <span class="op">+</span></a>
<a class="sourceLine" id="cb49-7" title="7"><span class="st">    </span><span class="kw">ggtitle</span>(<span class="st">&quot;Final task coverage&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb49-8" title="8"><span class="st">    </span><span class="kw">theme</span>(),</a>
<a class="sourceLine" id="cb49-9" title="9">  <span class="dt">nrow=</span><span class="dv">1</span>,</a>
<a class="sourceLine" id="cb49-10" title="10">  <span class="dt">ncol=</span><span class="dv">2</span>,</a>
<a class="sourceLine" id="cb49-11" title="11">  <span class="dt">align=</span><span class="st">&quot;h&quot;</span>,</a>
<a class="sourceLine" id="cb49-12" title="12">  <span class="co"># rel_widths=c(3,2),</span></a>
<a class="sourceLine" id="cb49-13" title="13">  <span class="dt">labels=</span><span class="st">&quot;auto&quot;</span></a>
<a class="sourceLine" id="cb49-14" title="14">)</a></code></pre></div>
<pre><code>## Warning: Computation failed in `stat_summary()`:</code></pre>
<div class="sourceCode" id="cb51"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb51-1" title="1"><span class="co"># grid</span></a>
<a class="sourceLine" id="cb51-2" title="2">grid &lt;-<span class="st"> </span><span class="kw">plot_grid</span>(</a>
<a class="sourceLine" id="cb51-3" title="3">  grid,</a>
<a class="sourceLine" id="cb51-4" title="4">  legend,</a>
<a class="sourceLine" id="cb51-5" title="5">  <span class="dt">nrow=</span><span class="dv">2</span>,</a>
<a class="sourceLine" id="cb51-6" title="6">  <span class="dt">ncol=</span><span class="dv">1</span>,</a>
<a class="sourceLine" id="cb51-7" title="7">  <span class="dt">rel_heights=</span><span class="kw">c</span>(<span class="dv">1</span>, <span class="fl">0.1</span>)</a>
<a class="sourceLine" id="cb51-8" title="8">)</a>
<a class="sourceLine" id="cb51-9" title="9">grid</a></code></pre></div>
<p><img src="supplemental-material_files/figure-html/unnamed-chunk-15-1.png" width="672" /></p>
<div class="sourceCode" id="cb52"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb52-1" title="1"><span class="kw">save_plot</span>(</a>
<a class="sourceLine" id="cb52-2" title="2">  <span class="kw">paste</span>(</a>
<a class="sourceLine" id="cb52-3" title="3">    plot_directory,</a>
<a class="sourceLine" id="cb52-4" title="4">    <span class="st">&quot;2021-11-15-performance-fig.pdf&quot;</span>,</a>
<a class="sourceLine" id="cb52-5" title="5">    <span class="dt">sep=</span><span class="st">&quot;&quot;</span></a>
<a class="sourceLine" id="cb52-6" title="6">  ),</a>
<a class="sourceLine" id="cb52-7" title="7">  grid,</a>
<a class="sourceLine" id="cb52-8" title="8">  <span class="dt">base_width=</span><span class="dv">12</span>,</a>
<a class="sourceLine" id="cb52-9" title="9">  <span class="dt">base_height=</span><span class="dv">6</span></a>
<a class="sourceLine" id="cb52-10" title="10">)</a></code></pre></div>

</div>
</div>
            </section>

          </div>
        </div>
      </div>
<a href="digital-organisms.html" class="navigation navigation-prev " aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
<a href="directed-digital-evolution-experiment.html" class="navigation navigation-next " aria-label="Next page"><i class="fa fa-angle-right"></i></a>
    </div>
  </div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": "https://github.com/amlalejini/directed-digital-evolution/tree/main/experiments/2021-11-15-ec/analysis/2021-11-15-ec.Rmd",
"text": "Edit"
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": null,
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
}
});
});
</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    var src = "true";
    if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
    if (location.protocol !== "file:")
      if (/^https?:/.test(src))
        src = src.replace(/^https?:/, '');
    script.src = src;
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>
</body>

</html>
back to top