Chapter 6 Conventional genetic programming experiment

Data analyses for our conventional evolutionary computing experiment.

6.2 Analysis dependencies

Load all required R libraries

## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.6     v purrr   0.3.4
## v tibble  3.1.7     v dplyr   1.0.9
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

These analyses were knit with the following environment:

##                _                           
## platform       x86_64-pc-linux-gnu         
## arch           x86_64                      
## os             linux-gnu                   
## system         x86_64, linux-gnu           
## status                                     
## major          4                           
## minor          2.1                         
## year           2022                        
## month          06                          
## day            23                          
## svn rev        82513                       
## language       R                           
## version.string R version 4.2.1 (2022-06-23)
## nickname       Funny-Looking Kid

6.3 Setup

Load experiment summary data.

Load time series data.

Miscellaneous setup.

6.5 Final task coverage

Task coverage after 55,000 generations of evolution.

Statistical results:

## 
##  Kruskal-Wallis rank sum test
## 
## data:  max_fit_aggregate_score by SELECTION_METHOD
## Kruskal-Wallis chi-squared = 332.52, df = 6, p-value < 2.2e-16
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  exp_summary_data$max_fit_aggregate_score and exp_summary_data$SELECTION_METHOD 
## 
##          elite   elite-10 tourn   lex     nde     random
## elite-10 0.0087  -        -       -       -       -     
## tourn    1.8e-14 < 2e-16  -       -       -       -     
## lex      < 2e-16 < 2e-16  < 2e-16 -       -       -     
## nde      < 2e-16 < 2e-16  1.7e-15 < 2e-16 -       -     
## random   < 2e-16 < 2e-16  < 2e-16 < 2e-16 < 2e-16 -     
## none     < 2e-16 < 2e-16  < 2e-16 < 2e-16 < 2e-16 0.8360
## 
## P value adjustment method: bonferroni

6.6 Generation 2,000 task coverage

Task coverage after 2,000 generations (i.e., the number of cycles runin the directed evolution experiments)

Statistical results:

## 
##  Kruskal-Wallis rank sum test
## 
## data:  max_org_task_coverage by SELECTION_METHOD
## Kruskal-Wallis chi-squared = 322.54, df = 6, p-value < 2.2e-16
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  exp_data_gen_2000$max_org_task_coverage and exp_data_gen_2000$SELECTION_METHOD 
## 
##          elite   elite-10 tourn   lex     nde     random
## elite-10 1.4e-09 -        -       -       -       -     
## tourn    0.0013  1.9e-14  -       -       -       -     
## lex      < 2e-16 7.3e-15  < 2e-16 -       -       -     
## nde      9.8e-14 2.3e-16  2.7e-11 < 2e-16 -       -     
## random   < 2e-16 < 2e-16  < 2e-16 < 2e-16 < 2e-16 -     
## none     < 2e-16 < 2e-16  < 2e-16 < 2e-16 < 2e-16 1.0000
## 
## P value adjustment method: bonferroni