Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:08bff68ecbf6e0ce945a20f0f4fbc81c488dae09
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
%   Distribution code Version 1.0 -- 02/31/2020 by Wei Liu Copyright 2020
%
%   The code is created based on the method described in the following paper 
%   [1] "Real-time Image Smoothing via Iterative Least Squares", Wei Liu, Pingping Zhang, 
%        Xiaolin Huang, Jie Yang, Chunhua Shen and Ian Reid, ACM Transactions on Graphics, 
%        presented at SIGGRAPH 2020. 
%  
%   The code and the algorithm are for non-comercial use only.


%  ---------------------- Input------------------------
%  F:              input image, can be gray image or RGB color image
%  lambda:     \lambda in Eq.(1), control smoothing strength
%  p:              the power norm in the Charbonnier penalty in Eq. (2)
%  eps:          the small constant number in the Charbonnier penalty in Eq. (2)
%  iter:           iteration number of the ILS in Eq. (8)

%  ---------------------- Output------------------------
%  U:             smoothed image

function U =ILS_LNorm_GPU(F, lambda, p, eps, iter)

F = gpuArray(single(F));  % 'single' precision is very important to reduce the computational cost

gamma = 0.5 * p - 1;
c =  p * eps^gamma;

[N, M, D] = size(F);
sizeI2D = [N, M];

otfFx = psf2otf_Dx_GPU(sizeI2D); % equal to otfFx = psf2otf(fx, sizeI2D) where fx = [1, -1];
otfFy = psf2otf_Dy_GPU(sizeI2D); % equal to otfFy = psf2otf(fy, sizeI2D) where fy = [1; -1];

Denormin = abs(otfFx).^2 + abs(otfFy ).^2;
Denormin = repmat(Denormin, [1, 1, D]);
Denormin = 1 + 0.5 * c * lambda * Denormin;

U = F;  % smoothed image

Normin1 = fft2(U);

for k = 1: iter
    
    % Intermediate variables \mu update, in x-axis and y-axis direction
    u_h = [diff(U,1,2), U(:,1,:) - U(:,end,:)];
    u_v = [diff(U,1,1); U(1,:,:) - U(end,:,:)];
        
    mu_h = c .* u_h - p .* u_h .* (u_h .* u_h + eps) .^ gamma;
    mu_v = c .* u_v - p .* u_v .* (u_v .* u_v + eps) .^ gamma;
    
    % Update the smoothed image U
    Normin2_h = [mu_h(:,end,:) - mu_h(:, 1,:), - diff(mu_h,1,2)];
    Normin2_v = [mu_v(end,:,:) - mu_v(1, :,:); - diff(mu_v,1,1)];
    
    FU = (Normin1 + 0.5 * lambda * (fft2(Normin2_h + Normin2_v))) ./ Denormin;
    U = real(ifft2(FU));

    Normin1 = FU;  % This helps to further enlarge the smoothing strength
    
end

U = gather(U);

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API