Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 0f95d5b
  • /
  • R
  • /
  • tran.2D.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:09136d1ff4228928a3dc9e204e837558d60d951b
directory badge Iframe embedding
swh:1:dir:d59871c8b2734dd08765b16d928e656c07fe0b0e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
tran.2D.R

##==============================================================================
## Transport in a two-dimensional finite difference grid
##==============================================================================

tran.2D <- function(C, C.x.up=C[1,], C.x.down=C[nrow(C),],
  C.y.up=C[,1],  C.y.down=C[,ncol(C)],
  flux.x.up=NULL, flux.x.down=NULL, flux.y.up=NULL, flux.y.down=NULL,
  a.bl.x.up=NULL, C.bl.x.up=NULL, a.bl.x.down=NULL, C.bl.x.down=NULL,
  a.bl.y.up=NULL, C.bl.y.up=NULL, a.bl.y.down=NULL, C.bl.y.down=NULL,
  D.grid=NULL, D.x=NULL, D.y=D.x, v.grid=NULL, v.x=0, v.y=0, 
  AFDW.grid=NULL, AFDW.x=1, AFDW.y=AFDW.x,
  VF.grid=NULL,VF.x=1, VF.y=VF.x,
  A.grid=NULL, A.x=1, A.y=1,
  grid=NULL,dx=NULL, dy=NULL,
  full.check = FALSE, full.output = FALSE)
											
{
  if (is.null(grid))
   if (is.null(dx) | is.null(dy))
      stop("error: either grid or dx and dy should be specified  ")

  Nx <- nrow(C)
  Ny <- ncol(C)

# DEFAULT INFILLING OF GRID PARAMETERS

#==============================================================================
# infilling of 2D numerical grid
#==============================================================================
  if (is.null(grid)) {
     DX    <-  if (is.list(dx)) dx$dx else rep(dx,length.out=Nx)
     DXaux <-  if (is.list(dx)) dx$dx.aux else 0.5*(c(0,rep(dx,length.out=Nx))+
                                  c(rep(dx,length.out=Nx),0))
     DY    <-  if (is.list(dy)) dy$dx else rep(dy,length.out=Ny)
     DYaux <-  if (is.list(dy)) dy$dx.aux else 0.5*(c(0,rep(dy,length.out=Ny))+
                                  c(rep(dy,length.out=Ny),0))

    grid <- list(
      dx    = DX,  dx.aux= DXaux,
      dy    = DY,  dy.aux= DYaux
                 )
   }
#==============================================================================
# infilling of grids with x.int, y.int, x.mid, y.mid needed
#==============================================================================
  gridFill <- function(G.x,G.y,Name)    # define a function first
  {
  
    # check if G.x and G.y is not NULL
    if (is.null(G.x) | is.null(G.y))
      stop( (paste("error: ",Name,"and (",Name,".x and", Name,".y) cannot be NULL at the same time", del="")))
    G.grid <- list()
    # infilling of x-matrix
    if (is.matrix(G.x)) {
      if (sum(abs(dim(G.x) - c(Nx+1,Ny)))!=0)
        stop (paste("error: ",Name,".x matrix not of correct (Nx+1) Ny dimensions", del=""))
      G.grid$x.int <- G.x
      G.grid$x.mid <- 0.5*(G.x[1:Nx,]+G.x[2:(Nx+1),])
    } else if (class(G.x)=="prop.1D") {
      G.grid$x.int <- matrix(data=G.x$int,nrow=(Nx+1),ncol=Ny)
      G.grid$x.mid <- matrix(data=G.x$mid, nrow=Nx, ncol=Ny)
    } else if (length(G.x) == 1) {
      G.grid$x.int <- matrix(data=G.x,nrow=(Nx+1),ncol=Ny)
      G.grid$x.mid <- matrix(data=G.x,nrow=Nx,ncol=Ny)
    } else if (length(G.x) != Nx+1) {
        stop (paste("error: ",Name,".x should be a vector of length 1 or Nx+1", del=""))
    } else {  # correct length
      G.grid$x.int <- matrix(data=G.x,nrow=(Nx+1),ncol=Ny)
      G.grid$x.mid <- matrix(data=0.5*(G.x[1:Nx]  +G.x[2:(Nx+1)]),
                     nrow=Nx, ncol=Ny)
    }
    # infilling of y-matrix
    if (is.matrix(G.y)) {
      if (sum(abs(dim(G.y) - c(Nx,Ny+1)))!=0)
        stop (paste("error: ",Name,".y matrix not of correct Nx(Ny+1)dimensions", del=""))
      G.grid$y.int <- G.y
      G.grid$y.mid <- 0.5*(G.y[,1:Ny]+G.y[,2:(Ny+1)])
    } else if (class(G.y)=="prop.1D") {
      G.grid$y.int <- matrix(data=G.y$int,nrow=Nx,ncol=(Ny+1))
      G.grid$y.mid <- matrix(data=G.y$mid, nrow=Nx, ncol=Ny)
    } else if (length(G.y) == 1) {
      G.grid$y.int <- matrix(data=G.y,nrow=Nx,ncol=(Ny+1))
      G.grid$y.mid <- matrix(data=G.y,nrow=Nx,ncol=Ny)
    } else if (length(G.y) != Ny+1) {
        stop (paste("error: ",Name,".y should be a vector of length 1 or Ny+1", del=""))
    } else {  # correct length
      G.grid$y.int <- matrix(data=G.y,nrow=Nx,ncol=(Ny+1))
      G.grid$y.mid <- matrix(data=0.5*(G.y[1:Nx]  +G.y[2:(Nx+1)]),
                     nrow=Nx, ncol=Ny)
    }
    G.grid
  }

# Need this for VF and A (volume fraction and surface

  if (is.null(VF.grid)) VF.grid <- gridFill(VF.x,VF.y,"VF")
  if (is.null(A.grid)) A.grid <- gridFill(A.x,A.y,"A")

#==============================================================================
# infilling of other grids with only  x.int and y.int needed
#==============================================================================

  gridInt <- function(G.x,G.y,Name)     # define a function first
  {
    # check if G.x and G.y is not NULL
    if (is.null(G.x) | is.null(G.y))
      stop( (paste("error: ",Name,"and (",Name,".x and", Name,".y) cannot be NULL at the same time", del="")))
    G.grid <- list()
    # infilling of x-matrix
    if (is.matrix(G.x)) {
      if (sum(abs(dim(G.x) - c(Nx+1,Ny)))!=0)
        stop (paste("error: ",Name,".x matrix not of correct (Nx+1) Ny dimensions", del=""))
      G.grid$x.int <- G.x
    } else if (class(G.x)=="prop.1D") {
      G.grid$x.int <- matrix(data=G.x$int,nrow=(Nx+1),ncol=Ny)
    } else if (length(G.x) == 1) {
      G.grid$x.int <- matrix(data=G.x,nrow=(Nx+1),ncol=Ny)
    } else if (length(G.x) != Nx+1) {
        stop (paste("error: ",Name,".x should be a vector of length 1 or Nx+1", del=""))
    } else {  # correct length
      G.grid$x.int <- matrix(data=G.x,nrow=(Nx+1),ncol=Ny)
    }
    # infilling of y-matrix
    if (is.matrix(G.y)) {
      if (sum(abs(dim(G.y) - c(Nx,Ny+1)))!=0)
        stop (paste("error: ",Name,".y matrix not of correct Nx(Ny+1)dimensions", del=""))
      G.grid$y.int <- G.y
    } else if (class(G.y)=="prop.1D") {
      G.grid$y.int <- matrix(data=G.y$int,nrow=Nx,ncol=(Ny+1))
    } else if (length(G.y) == 1) {
      G.grid$y.int <- matrix(data=G.y,nrow=Nx,ncol=(Ny+1))
    } else if (length(G.y) != Ny+1) {
        stop (paste("error: ",Name,".y should be a vector of length 1 or Ny+1", del=""))
    } else {  # correct length
      G.grid$y.int <- matrix(data=G.y,nrow=Nx,ncol=(Ny+1))
    }
    G.grid
  }

# Need this for AFDW , D and v

  if (is.null(AFDW.grid)) AFDW.grid <- gridInt(AFDW.x,AFDW.y,"AFDW")
  if (is.null(D.grid)) D.grid <- gridInt(D.x,D.y,"D")
  if (is.null(v.grid)) v.grid <- gridInt(v.x,v.y,"v")

#==============================================================================
# INPUT CHECKS  
#==============================================================================


  if (full.check) {

## check dimensions of input concentrations

    if (!is.null(C.x.up)) {
      if (!((length(C.x.up)==1) || (length(C.x.up)==(Ny))))
        stop("error: C.x.up should be a vector of length 1 or ncol(C)")
    }
    if (!is.null(C.x.down)) {
      if (!((length(C.x.down)==1) || (length(C.x.down)==(Ny))))
        stop("error: C.x.down should be a vector of length 1 or ncol(C)")
    }
    if (!is.null(C.y.up)) {
      if (!((length(C.y.up)==1) || (length(C.y.up)==(Nx))))
        stop("error: C.y.up should be a vector of length 1 or nrow(C)")
    }
    if (!is.null(C.y.down)) {
      if (!((length(C.y.down)==1) || (length(C.y.down)==(Nx))))
        stop("error: C.y.down should be a vector of length 1 or nrow(C)")
    }

    if (!is.null(C.bl.x.up)) {
      if (!((length(C.bl.x.up)==1) || (length(C.bl.x.up)==(Ny))))
        stop("error: C.bl.x.up should be a vector of length 1 or ncol(C)")
   }

    if (!is.null(C.bl.x.down)) {
      if (!((length(C.bl.x.down)==1) || (length(C.bl.x.down)==(Ny))))
        stop("error: C.bl.x.down should be a vector of length 1 or ncol(C)")
    }

    if (!is.null(C.bl.y.up)) {
      if (!((length(C.bl.y.up)==1) || (length(C.bl.y.up)==(Nx))))
        stop("error: C.bl.y.up should be a vector of length 1 or nrow(C)")
    }

    if (!is.null(C.bl.y.down)) {
      if (!((length(C.bl.y.down)==1) || (length(C.bl.y.down)==(Nx))))
        stop("error: C.bl.y.down should be a vector of length 1 or nrow(C)")
    }

# check dimensions of input fluxes

    if (!is.null(flux.x.up)) {
      if (!((length(flux.x.up)==1) || (length(flux.x.up)==(Ny))))
        stop("error: flux.x.up should be a vector of length 1 or ncol(C)")
    }
    if (!is.null(flux.x.down)) {
      if (!((length(flux.x.down)==1) || (length(flux.x.down)==(Ny))))
        stop("error: flux.x.down should be a vector of length 1 or ncol(C)")
    }
    if (!is.null(flux.y.up)) {
      if (!((length(flux.y.up)==1) || (length(flux.y.up)==(Nx))))
        stop("error: flux.y.up should be a vector of length 1 or nrow(C)")
    }

    if (!is.null(flux.y.down)) {
      if (!((length(flux.y.down)==1) || (length(flux.y.down)==(Nx))))
        stop("error: flux.y.down should be a vector of length 1 or nrow(C)")
    }


## check input of grid

    if (is.null(dx) && is.null(dy) && is.null(grid))
      stop("error: dx, dy, and grid cannot be NULL at the same time")

    gn <- names(grid)
    if (! "dx" %in% gn)
      stop("error: grid should be a list that contains 'dx' ")
    if (! "dx.aux" %in% gn)
    	stop("error: grid should be a list that contains 'dx.aux' ")
    if (! "dy" %in% gn)
      stop("error: grid should be a list that contains 'dy' ")
    if (! "dy.aux" %in% gn)
    	stop("error: grid should be a list that contains 'dy.aux' ")
    if (is.null(grid$dx) || is.null(grid$dx.aux))
    	stop("error: the grid should be a list with (numeric) values for 'dx' and 'dx.aux' ")
    if (is.null(grid$dy) || is.null(grid$dy.aux))
    	stop("error: the grid should be a list with (numeric) values for 'dy' and 'dy.aux' ")
    if (any(grid$dx <= 0) || any(grid$dx.aux <= 0) )
    	stop("error: the grid distances dx and dx.aux should always be positive")
    if (any(grid$dy <= 0) || any(grid$dy.aux <= 0) )
    	stop("error: the grid distances dy and dy.aux should always be positive")

## check input of AFDW.grid

    gn <- names(AFDW.grid)
    if (! "x.int" %in% gn)
      stop("error: AFDW.grid should be a list that contains 'x.int', the AFDW values at the interfaces of the grid cells in x-direction")
    if (! "y.int" %in% gn)
      stop("error: AFDW.grid should be a list that contains 'y.int', the AFDW values at the interfaces of the grid cells in y-direction")
    if (is.null(AFDW.grid$x.int))
      stop("error: AFDW.grid$x.int should be a list with (numeric) values")
    if (is.null(AFDW.grid$y.int))
      stop("error: AFDW.grid$y.int should be a list with (numeric) values")
    if (any (AFDW.grid$x.int < 0)||any (AFDW.grid$x.int > 1))
    	stop("error: the AFDW should range between 0 and 1")
    if (any (AFDW.grid$y.int < 0)||any (AFDW.grid$y.int > 1))
	    stop("error: the AFDW should range between 0 and 1")

## check input of D.grid

    gn <- names(D.grid)
    if (! "x.int" %in% gn)
      stop("error: D.grid should be a list that contains 'x.int', the D values at the interfaces of the grid cells in x-direction")
    if (! "y.int" %in% gn)
      stop("error: D.grid should be a list that contains 'y.int', the D values at the interfaces of the grid cells in y-direction")
    if (is.null(D.grid$x.int))
      stop("error: D.grid$x.int should be a list with (numeric) values")
    if (is.null(D.grid$y.int))
      stop("error: D.grid$y.int should be a list with (numeric) values")
    if (any (D.grid$x.int < 0)||any (D.grid$y.int < 0))
    	stop("error: the diffusion coefficient should always be positive")

## check input of v.grid

    gn <- names(v.grid)
    if (! "x.int" %in% gn)
      stop("error: v.grid should be a list that contains 'x.int', the velocity values at the interfaces of the grid cells in x-direction")
    if (! "y.int" %in% gn)
      stop("error: v.grid should be a list that contains 'y.int', the velocity values at the interfaces of the grid cells in y-direction")
    if (is.null(v.grid$x.int))
      stop("error: the advective velocity v.grid$x.int should be a list with (numeric) values")
    if (is.null(v.grid$y.int))
      stop("error: the advective velocity v.grid$y.int should be a list with (numeric) values")

## check input of VF.grid

    gn <- names(VF.grid)
    if (! "x.int" %in% gn)
      stop("error: VF.grid should be a list that contains 'x.int'")
    if (! "y.int" %in% gn)
      stop("error: VF.grid should be a list that contains 'y.int'")
    if (! "x.mid" %in% gn)
      stop("error: VF.grid should be a list that contains 'x.mid'")
    if (! "y.mid" %in% gn)
      stop("error: VF.grid should be a list that contains 'y.mid'")
    if (is.null(VF.grid$x.int) || is.null(VF.grid$y.int) || is.null(VF.grid$x.mid) || is.null(VF.grid$y.mid))
     stop("error: VF should contain (numeric) values")
    if (any (VF.grid$x.int < 0) || any (VF.grid$y.int < 0) || any (VF.grid$x.mid < 0) || any (VF.grid$y.mid < 0))
      stop("error: the VF values should always be positive")

## check input of A.grid
    gn <- names(A.grid)
    if (! "x.int" %in% gn)
      stop("error: A.grid should be a list that contains 'x.int'")
    if (! "y.int" %in% gn)
      stop("error: A.grid should be a list that contains 'y.int'")
    if (! "x.mid" %in% gn)
      stop("error: A.grid should be a list that contains 'x.mid'")
    if (! "y.mid" %in% gn)
      stop("error: A.grid should be a list that contains 'y.mid'")
    if (is.null(A.grid$x.int) || is.null(A.grid$y.int) || is.null(A.grid$x.mid) || is.null(A.grid$y.mid))
     stop("error: the VF should contain (numeric) values")
    if (any (A.grid$x.int < 0) || any (A.grid$y.int < 0) || any (A.grid$x.mid < 0) || any (A.grid$y.mid < 0))
      stop("error: the A values should always be positive")

  }
## FUNCTION BODY: CALCULATIONS

## Impose boundary flux at upstream x-boundary when needed
## Default boundary condition is no gradient
  if (! is.null (flux.x.up[1])) {
    nom <- flux.x.up + VF.grid$x.int[1,]*(D.grid$x.int[1,]/grid$dx.aux[1] +
           (1-AFDW.grid$x.int[1,])*v.grid$x.int[1,])*C[1,]
    denom <- VF.grid$x.int[1,]*(D.grid$x.int[1,]/grid$dx.aux[1]+
             AFDW.grid$x.int[1,]*v.grid$x.int[1,])
    C.x.up <- nom/denom
  }

## Impose boundary flux at downstream x-boundary when needed
## Default boundary condition is no gradient
  if (! is.null (flux.x.down[1])) {
  	nom <- flux.x.down - VF.grid$x.int[(Nx+1),]*(D.grid$x.int[(Nx+1),]/
            grid$dx.aux[Nx+1] + AFDW.grid$x.int[(Nx+1),]*v.grid$x.int[(Nx+1),])*C[Nx,]
    denom <- -VF.grid$x.int[(Nx+1),]*(D.grid$x.int[(Nx+1),]/grid$dx.aux[Nx+1]+
            (1-AFDW.grid$x.int[(Nx+1),])*v.grid$x.int[(Nx+1),])
    C.x.down <- nom/denom
  }

# Impose boundary flux at upstream y-boundary when needed
# Default boundary condition is no gradient
  if (! is.null (flux.y.up[1])) {
    nom <- flux.y.up + VF.grid$y.int[,1]*(D.grid$y.int[,1]/grid$dy.aux[1] +
           (1-AFDW.grid$y.int[,1])*v.grid$y.int[,1])*C[,1]
    denom <- VF.grid$y.int[,1]*(D.grid$y.int[,1]/grid$dy.aux[1]+
             AFDW.grid$y.int[,1]*v.grid$y.int[,1])
    C.y.up <- nom/denom
  }

# Impose boundary flux at downstream y-boundary when needed
# Default boundary condition is no gradient
  if (! is.null (flux.y.down[1]))  {
	  nom <- flux.y.down - VF.grid$y.int[,(Ny+1)]*(D.grid$y.int[,(Ny+1)]/
           grid$dy.aux[Ny+1] + AFDW.grid$y.int[,(Ny+1)]*v.grid$y.int[,(Ny+1)])*C[,Ny]
    denom <- -VF.grid$y.int[,(Ny+1)]*(D.grid$y.int[,(Ny+1)]/grid$dy.aux[Ny+1]+
             (1-AFDW.grid$y.int[,(Ny+1)])*v.grid$y.int[,(Ny+1)])
    C.y.down <- nom/denom
  }

## when upper boundary layer is present, calculate new C.x.up
  if (!is.null(a.bl.x.up) & !is.null(C.bl.x.up[1])) {
	  nom <- a.bl.x.up*C.bl.x.up + VF.grid$x.int[1,]*(D.grid$x.int[1,]/
           grid$dx.aux[1] + (1-AFDW.grid$x.int[1,])*v.grid$x.int[1,])*C[1,]
    denom <- a.bl.x.up + VF.grid$x.int[1,]*(D.grid$x.int[1,]/grid$dx.aux[1]+
             AFDW.grid$x.int[1,]*v.grid$x.int[1,])
	  C.x.up <- nom/denom
  }

## when lower boundary layer is present, calculate new C.x.down
  if (!is.null(a.bl.x.down) & !is.null(C.bl.x.down[1])) {
	  nom <- a.bl.x.down*C.bl.x.down + VF.grid$x.int[(Nx+1),]*(D.grid$x.int[(Nx+1),]/
           grid$dx.aux[(Nx+1)] + (1-AFDW.grid$x.int[(Nx+1),])*
           v.grid$x.int[(Nx+1),])*C[Nx,]
    denom <- a.bl.x.down + VF.grid$x.int[(Nx+1),]*(D.grid$x.int[(Nx+1),]/
             grid$dx.aux[(Nx+1)]+ AFDW.grid$x.int[(Nx+1),]*v.grid$x.int[(Nx+1),])
	  C.x.down <- nom/denom
  }

## when upper y boundary layer is present, calculate new C.y.up
  if (!is.null(a.bl.y.up) & !is.null(C.bl.y.up[1])) {
	  nom <- a.bl.y.up*C.bl.y.up + VF.grid$y.int[,1]*(D.grid$y.int[,1]/
           grid$dy.aux[1] + (1-AFDW.grid$y.int[,1])*v.grid$y.int[,1])*C[,1]
    denom <- a.bl.y.up + VF.grid$y.int[,1]*(D.grid$y.int[,1]/grid$dy.aux[1]+
             AFDW.grid$y.int[,1]*v.grid$y.int[,1])
	  C.y.up <- nom/denom
  }

## when lower y boundary layer is present, calculate new C.y.down
  if (!is.null(a.bl.y.down) & !is.null(C.bl.y.down[1]))   {
	  nom <- a.bl.y.down*C.bl.y.down + VF.grid$y.int[,(Ny+1)]*
           (D.grid$y.int[,(Ny+1)]/grid$dy.aux[(Ny+1)] +
           (1-AFDW.grid$y.int[,(Ny+1)])*v.grid$y.int[,(Ny+1)])*C[,Ny]
    denom <- a.bl.y.down + VF.grid$y.int[,(Ny+1)]*(D.grid$y.int[,(Ny+1)]/
             grid$dy.aux[(Ny+1)]+ AFDW.grid$y.int[,(Ny+1)]*v.grid$y.int[,(Ny+1)])
	  C.y.down <- nom/denom
  }

## Calculate diffusive part of the flux
  x.Dif.flux <- as.matrix(-VF.grid$x.int * D.grid$x.int *
                diff(rbind(C.x.up, C, C.x.down, deparse.level = 0))/
                matrix(data=grid$dx.aux,nrow=(Nx+1),ncol=Ny,byrow=FALSE))
  y.Dif.flux <- as.matrix(-VF.grid$y.int * D.grid$y.int *
                t(diff(t(cbind(C.y.up,C,C.y.down,deparse.level = 0))))/
                matrix(data=grid$dy.aux,nrow=Nx,ncol=(Ny+1),byrow=TRUE))

## Calculate advective part of the flux
  x.Adv.flux <- 0
  
  if (any(v.grid$x.int >0) ) {
    vv <- v.grid$x.int
    vv[vv<0]<-0
    x.Adv.flux <-  x.Adv.flux + as.matrix(VF.grid$x.int * vv * (
                 (1-AFDW.grid$x.int) * rbind(C.x.up,C,deparse.level = 0)
                 + AFDW.grid$x.int * rbind(C,C.x.down,deparse.level = 0)))
  }
  if (any (v.grid$x.int < 0))  {
    vv <- v.grid$x.int
    vv[vv>0]<-0
    x.Adv.flux <-  x.Adv.flux + as.matrix(VF.grid$x.int * vv * (
                    AFDW.grid$x.int * rbind(C.x.up,C,deparse.level = 0)
                 + (1-AFDW.grid$x.int) * rbind(C,C.x.down,deparse.level = 0)))

  }
  y.Adv.flux <- 0
  if (any(v.grid$y.int >0) ) {
    vv <- v.grid$y.int
    vv[vv<0]<-0
    y.Adv.flux <-  y.Adv.flux + as.matrix(VF.grid$y.int * vv * (
                 (1-AFDW.grid$y.int) * cbind(C.y.up,C,deparse.level = 0)
                 + AFDW.grid$y.int * cbind(C,C.y.down,deparse.level = 0)))
  }
  if (any (v.grid$y.int < 0)) {
    vv <- v.grid$y.int
    vv[vv>0]<-0
    y.Adv.flux <-  y.Adv.flux + as.matrix(VF.grid$y.int * vv * (
                    AFDW.grid$y.int * cbind(C.y.up,C,deparse.level = 0)
                 + (1-AFDW.grid$y.int) * cbind(C,C.y.down,deparse.level = 0)))
  }

  x.flux <- x.Dif.flux + x.Adv.flux
  y.flux <- y.Dif.flux + y.Adv.flux

## Impose boundary fluxes when needed
## Default boundary condition is no gradient
  if (! is.null (flux.x.up[1]))
    x.flux[1,]   <- flux.x.up
  if (! is.null (flux.x.down[1]))
    x.flux[nrow(x.flux),] <- flux.x.down
    
  if (! is.null (flux.y.up[1]))
    y.flux[,1]   <- flux.y.up
  if (! is.null (flux.y.down[1]))
    y.flux[,ncol(y.flux)] <- flux.y.down

## Calculate rate of change = flux gradient
  dFdx <- - (diff(A.grid$x.int*x.flux) / A.grid$x.mid/grid$dx ) / VF.grid$x.mid
  dFdy <- -t(diff(t(A.grid$y.int*y.flux))/t(A.grid$y.mid)/grid$dy) / VF.grid$y.mid


  if (!full.output) {
    return (list (dC = dFdx + dFdy,                    # Rate of change due to advective-diffuisve transport in each grid cell
                  flux.x.up = x.flux[1,],                # flux across lower boundary interface; positive = IN
                  flux.x.down = x.flux[nrow(x.flux),],   # flux across lower boundary interface; positive = OUT
                  flux.y.up = y.flux[,1],                # flux across lower boundary interface; positive = IN
                  flux.y.down = y.flux[,ncol(y.flux)]))  # flux across lower boundary interface; positive = OUT

  } else {
    return (list (dC = dFdx + dFdy,                    # Rate of change in the centre of each grid cells
                  C.x.up = C.x.up,                     # concentration at upper interface
                  C.x.down = C.x.down,                 # concentration at upper interface
                  C.y.up = C.y.up,                     # concentration at upper interface
                  C.y.down = C.y.down,                 # concentration at upper interface
                  x.flux = x.flux,                     # flux across at the interface of each grid cell
                  y.flux = y.flux,                     # flux across at the interface of each grid cell
                  flux.x.up = x.flux[1,],               # flux across lower boundary interface; positive = IN
                  flux.x.down = x.flux[nrow(x.flux),],  # flux across lower boundary interface; positive = OUT
                  flux.y.up = y.flux[,1],               # flux across lower boundary interface; positive = IN
                  flux.y.down = y.flux[,ncol(y.flux)])) # flux across lower boundary interface; positive = OUT
  }
} # end tran.2D

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top