Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://gitlab.com/Aldorn/pds-code
16 August 2023, 15:17:02 UTC
  • Code
  • Branches (8)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/dev
    • refs/heads/fortsolving
    • refs/heads/grb-callback
    • refs/heads/master
    • refs/heads/mip_modeling
    • refs/heads/setgraph
    • refs/heads/smithhicks
    • refs/heads/star-bound
    No releases to show
  • d80b87c
  • /
  • experiment.cpp
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:091fbab073b6d1feccaec2f449bc9b7e6b229e0a
origin badgedirectory badge Iframe embedding
swh:1:dir:d80b87cb9b3a8dd091b65c80cf10f1ef7c10de13
origin badgerevision badge
swh:1:rev:2ae686a997ec04c8c6441ec8ebea76188e772e80
origin badgesnapshot badge
swh:1:snp:7a4cd2a5ec73a061be17605597c4b1660b799026
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2ae686a997ec04c8c6441ec8ebea76188e772e80 authored by Max Göttlicher on 15 April 2023, 08:57:57 UTC
testing smith hicks weighted neighborhood
Tip revision: 2ae686a
experiment.cpp
#include <chrono>
#include <string>
#include <vector>
#include <optional>

#include <boost/program_options.hpp>
#include <fmt/format.h>
#include <fmt/os.h>
#include <fmt/chrono.h>

#include <htd/main.hpp>

#include "pds.hpp"
#include "graphio.hpp"
#include "pdssolve.hpp"
#include "gurobi_solve.hpp"
#include "draw_grid.hpp"

using namespace pds;

// Utility
template<> struct fmt::formatter<SolveState>: formatter<string_view> {
    template<class FormatContext>
    auto format(SolveState state, FormatContext& ctx) {
        string_view name = "unknown";
        switch (state) {
            case pds::SolveState::Optimal: name = "Optimal"; break;
            case pds::SolveState::Other: name = "Other"; break;
            case pds::SolveState::Heuristic: name = "Heuristic"; break;
            case pds::SolveState::Infeasible: name = "Infeasible"; break;
            case pds::SolveState::Timeout: name = "Timeout"; break;
        }
        return formatter<string_view>::format(name, ctx);
    }
};

auto now() {
    return std::chrono::high_resolution_clock::now();
}

template<typename T>
auto µs(T time) {
    return std::chrono::duration_cast<std::chrono::microseconds>(time).count();
}

// Reductions

bool simpleReductions(PdsState& state) {
    return exhaustiveSimpleReductions(state);
}

bool applyDominationReductions(PdsState& state) {
    bool changed = false;
    while (dominationReductions(state)) { changed = true; }
    return changed;
}

bool applyReductionsNotDomination(PdsState& state) {
    bool anyChanged = false;
    bool firstRun = true;
    bool changed;
    do {
        changed = exhaustiveSimpleReductions(state);
        if (firstRun || changed) if(state.activateNecessaryNodes()) {
                changed = true;
            }
        firstRun = false;
        anyChanged |= changed;
    } while (changed);
    return anyChanged;
}

bool applyReductionsNotNecessary(PdsState& state) {
    return noNecessaryReductions(state);
}

bool applyReductions(PdsState& state) {
    return exhaustiveReductions(state);
}

size_t treeWidth(const PowerGrid& graph) {
    std::unique_ptr<htd::LibraryInstance> library(htd::createManagementInstance(htd::Id::FIRST));
    htd::Graph htdGraph(library.get());
    pds::map<PowerGrid::VertexDescriptor, htd::vertex_t> vertices;
    for (auto v: graph.vertices()){
        auto mapped = htdGraph.addVertex();
        vertices[v] = mapped;
    }
    for (auto edge: graph.edges()) {
        auto [s, t] = graph.endpoints(edge);
        htdGraph.addEdge(vertices[s], vertices[t]);
    }
    library->orderingAlgorithmFactory().setConstructionTemplate(new htd::MinFillOrderingAlgorithm(library.get()));
    auto treeDecompositionAlgo = std::make_unique<htd::CombinedWidthMinimizingTreeDecompositionAlgorithm>(library.get());
    treeDecompositionAlgo->setComputeInducedEdgesEnabled(false);
    auto algo = std::make_unique<htd::CombinedWidthMinimizingTreeDecompositionAlgorithm>(library.get());
    auto baseAlgo = std::make_unique<htd::WidthMinimizingTreeDecompositionAlgorithm>(library.get());
    baseAlgo->setIterationCount(10);
    baseAlgo->addManipulationOperation(new htd::NormalizationOperation(library.get()));
    algo->addDecompositionAlgorithm(baseAlgo.release());
    auto decomposition = std::unique_ptr<htd::ITreeDecomposition>(algo->computeDecomposition(htdGraph));
    return decomposition->maximumBagSize();
}

VertexMap<size_t> propagationDistance(const PowerGrid& graph)  {
    using Vertex = PowerGrid::VertexDescriptor;
    VertexMap<ssize_t> unobservedDegree;
    VertexMap<size_t> step;
    std::deque<Vertex> queue;
    for (auto v: graph.vertices()) {
        unobservedDegree[v] += graph.degree(v);
        if (graph.getVertex(v).pmu == PmuState::Active) {
            step.insert_or_assign(v, 0);
            for (auto w: graph.neighbors(v)) {
                unobservedDegree[w] -= 1;
                if (!step.contains(w) && graph.getVertex(w).pmu != pds::PmuState::Active) {
                    step.insert_or_assign(w, step.at(v) + 1);
                    for (auto u: graph.neighbors(w)) {
                        unobservedDegree[u] -= 1;
                    }
                }
            }
        }
    }
    for (auto v: graph.vertices()) {
        if (step.contains(v) && unobservedDegree[v] == 1) queue.push_back(v);
    }
    for (auto v: graph.vertices()) {
        auto neighbors = graph.neighbors(v) | ranges::to<std::vector>;
        size_t unobserved = std::ranges::distance(neighbors | ranges::views::filter([&step](auto v) { return !step.contains(v); }));
        unused(unobserved);
        assert(unobservedDegree[v] == unobserved);
        assert(!step.contains(v) || step[v] == (graph.getVertex(v).pmu != PmuState::Active));
        if (graph.getVertex(v).pmu == pds::PmuState::Active) {
            for (auto w: graph.neighbors(v)) {
                assert(step.contains(w));
            }
        }
    }
    while (!queue.empty()) {
        auto v = queue.front();
        queue.pop_front();
        if (unobservedDegree[v] == 1) {
            for (auto w: graph.neighbors(v)) {
                if (!step.contains(w)) {
                    step[w] = step[v] + 1;
                    for (auto u: graph.neighbors(w)) {
                        unobservedDegree[u] -= 1;
                        if (unobservedDegree[u] == 1 && step.contains(u)) {
                            queue.push_back(u);
                        }
                    }
                    if (unobservedDegree[w] == 1) {
                        queue.push_back(w);
                    }
                }
            }
        }
    }
    for (auto v: graph.vertices()) {
        assert(unobservedDegree[v] == std::ranges::distance(graph.neighbors(v) | ranges::views::filter([&step](auto v) { return !step.contains(v); })));
    }
    return step;
}

void writeSolutionStatistics(const std::string_view& name, const PdsState& state, FILE* out) {
    using namespace fmt::literals;
    size_t maxDegree = 0;
    map<std::pair<pds::PmuState, bool>, map<size_t, size_t>> degrees;
    for (auto v: state.graph().vertices()) {
        auto deg = state.graph().degree(v);
        maxDegree = std::max(maxDegree, deg);
        degrees[{state.activeState(v), state.isZeroInjection(v)}][deg] += 1;
    }
    std::vector<std::string> degreeCount;
    for (size_t i = 0; i <= maxDegree; ++i) {
        std::vector<size_t> deg;
        for (bool zi: {true, false}) {
            for (auto state: {PmuState::Inactive, PmuState::Blank, PmuState::Active}) {
                deg.push_back(degrees[{state, zi}][i]);
            }
        }
        degreeCount.push_back(fmt::format("{}", fmt::join(deg, ":")));
    }
    auto step = propagationDistance(state.graph());
    ssize_t maxStep = -1;
    for (auto v: step) maxStep = std::max(maxStep, ssize_t(v.second));
    fmt::print(
            out,
            "{name},{n},{m},{n_zero_injection},{n_pmu},{n_inactive},{n_blank},{n_observed},{propagation_distance},{tree_width},\"{degrees}\"\n",
            "name"_a=name,
            "n"_a=state.graph().numVertices(),
            "m"_a=state.graph().numEdges(),
            "n_zero_injection"_a=state.numZeroInjection(),
            "n_pmu"_a=state.numActive(),
            "n_inactive"_a=state.numInactive(),
            "n_blank"_a=state.graph().numVertices() - state.numActive() - state.numInactive(),
            "n_observed"_a=state.numObserved(),
            "propagation_distance"_a=maxStep,
            "tree_width"_a=treeWidth(state.graph()),
            "degrees"_a=fmt::join(degreeCount, ";")
    );
}

// Main

auto getModel(const std::string& name) {
    if (name == "gurobi" || name == "jovanovic2") {
        return pds::modelJovanovicExpanded;
    } else if (name == "jovanovic") {
        return pds::modelJovanovic;
    } else if (name == "brimkov") {
        return pds::modelBrimkov;
    } else if (name == "brimkov2") {
        return pds::modelBrimkovExpanded;
    } else if (name == "azami" || name == "azami-brimkov") {
        return pds::modelAzamiBrimkov;
    } else if (name == "domination") {
        return pds::modelDomination;
    } else {
        throw std::invalid_argument("unknown model " + name);
    }
}

int main(int argc, const char** argv) {
    namespace po = boost::program_options;
    namespace fs = std::filesystem;
    using namespace std::string_literals;
    using std::string;

    po::options_description desc(argv[0]);
    desc.add_options()
            ("help,h", "show this help")
            ("graph,f", po::value<std::vector<string>>()->required()->multitoken(), "input files")
            ("ignore,i", po::value<string>(), "file that lists inputs to ignore")
            ("all-zi,z", "consider all nodes zero-innjection")
            ("outfile,o", po::value<string>(), "output file")
            ("reduce,r", po::value<string>()->implicit_value("all"s,"all")->default_value("none"s,"none"), "apply reduce. can be any of [none,all,simple,domination]")
            ("repeat,n", po::value<size_t>()->default_value(1)->implicit_value(5), "number of experiment repetitions")
            ("solve,s", po::value<string>()->default_value("none")->implicit_value("gurobi"), "solve method. can be any of [none,gurobi,greedy]")
            ("subproblems,u", "split into subproblems before calling solve")
            ("timeout,t", po::value<double>()->default_value(600.), "gurobi time limit (seconds)")
            ("draw,d", po::value<string>()->implicit_value("out"s), "draw states")
            ("write,w", po::value<string>()->implicit_value("solutions"s), "write solutions to the specified directory")
            ("stat-file", po::value<string>(), "write statistics about solutions")
    ;
    po::positional_options_description pos;
    pos.add("graph", -1);
    po::variables_map vm;
    po::store(po::command_line_parser(argc, argv).options(desc).positional(pos).run(),vm);

    if (vm.count("help")) {
        desc.print(std::cout);
        return 1;
    }

    bool allZeroInjection = vm.count("all-zi");
    double timeout = vm["timeout"].as<double>();

    size_t repetitions = vm["repeat"].as<size_t>();

    string reductionName = vm["reduce"].as<string>();
    std::function<bool(PdsState&)> reduce;
    if (reductionName == "none") {
        reduce = [](auto&) { return false; };
    } else if (reductionName == "all") {
        reduce = applyReductions;
    } else if (reductionName == "simple") {
        reduce = simpleReductions;
    } else if (reductionName == "domination") {
        reduce = applyDominationReductions;
    } else if (reductionName == "no-necessary") {
        reduce = applyReductionsNotNecessary;
    } else if (reductionName == "no-domination") {
        reduce = applyReductionsNotDomination;
    } else {
        fmt::print(stderr, "invalid reduction mode: {}. modes: {}", reductionName, fmt::join({"all", "simple", "domination", "no-necessary", "no-domination"}, ", "));
        return 2;
    }

    string solverName = vm["solve"].as<string>();
    std::function<SolveState(PdsState&, double)> solve;
    if (solverName == "branching") {
        solve = [](auto& state, double) { return solveBranching(state, true, greedy_strategies::largestDegree); };
    } else if (solverName == "greedy") {
        solve = [](auto& state, double) { return solveGreedy(state, true, greedy_strategies::largestDegree); };
    } else if (solverName == "fast") {
        solve = [](auto& state, double) { return fastGreedy(state); };
    } else if (solverName == "topdown") {
        solve = [](auto& state, double) { return topDownGreedy(state); };
    } else if (solverName == "none") {
        solve = [](auto &, double) { return SolveState::Other; };
    } else if (solverName == "logan") {
        solve = [](auto& state, double timeLimit) { return solveBozeman(state, false, timeLimit, 1); };
    } else if (solverName == "bozeman") {
        solve = [](auto& state, double timeLimit) { return solveBozeman(state, false, timeLimit, 0); };
    } else if (solverName == "bozeman2") {
        solve = [](auto& state, double timeLimit) { return solveBozeman(state, false, timeLimit, 2); };
    } else if (solverName == "bozeman3") {
        solve = [](auto& state, double timeLimit) { return solveBozeman(state, false, timeLimit, 3); };
    } else if (solverName == "forts") {
        solve = [](auto& state, double timeLimit) { return solveBozeman(state, false, timeLimit, 4); };
    } else {
        try {
            solve = [model=getModel(solverName)](auto &state, double timeout) {
                return solvePowerDominatingSet(state,
                                               false,
                                               timeout,
                                               model);
            };
        } catch(std::invalid_argument& ex) {
            fmt::print(stderr, "{}", ex.what());
            return 2;
        }
    }

    std::optional<fs::path> drawdir;

    if (vm.count("draw")) {
        drawdir = vm["draw"].as<string>();
        if (!fs::is_directory(*drawdir)) {
            fs::create_directories(*drawdir);
        }
    }
    std::optional<fs::path> solDir;
    if (vm.count("write")) {
        solDir = vm["write"].as<string>();
        if (!fs::is_directory(*solDir)) {
            fs::create_directories(*solDir);
        }
    }

    bool subproblems = vm.count("subproblems");

    std::vector<string> inputs;

    if (vm.count("graph")) {
        inputs = vm["graph"].as<std::vector<string>>();
    } else {
        fmt::print(stderr, "no input");
        return 2;
    }

    FILE* outfile = nullptr;
    std::vector<FILE*> outputs = {stdout};
    if (vm.count("outfile")) {
        auto outfileName = vm["outfile"].as<string>();
        fs::create_directories(fs::absolute(fs::path(outfileName)).parent_path());
        outfile = fopen(vm["outfile"].as<string>().c_str(), "w");
        outputs.push_back(outfile);
    }
    FILE* statFile = nullptr;
    if (vm.count("stat-file")) {
        auto statFileName = vm["stat-file"].as<string>();
        fs::create_directories(fs::absolute(fs::path(statFileName)).parent_path());
        statFile = fopen(statFileName.c_str(), "w");
        fmt::print(statFile, "#{}\n", fmt::join(std::span(argv, argc + argv), " "));
        fmt::print(statFile, "# degrees format: <#zi+inactive>:<#zi+blank>:<#zi+active>:<#nonzi+inactive>:<#nonzi+blank>:<#nonzi.active>;...\n");
        fmt::print(statFile, "{}", "name,n,m,n_zero_injection,n_pmu,n_inactive,n_blank,n_observed,propagation_distance,tree_width,degrees\n");
    }

    for (auto out: outputs) {
        fmt::print(out, "#{}\n", fmt::join(std::span(argv, argc + argv), " "));
        fmt::print(out, "{}\n","name,run,pmus,solved,result,t_total,t_reductions,t_solver,n,m,zi,n_reduced,m_reduced,zi_reduced,pmu_reduced,blank_reduced");
    }

    for (const std::string& filename: inputs) {
        PdsState inputState(readAutoGraph(filename, allZeroInjection));
        for (size_t i = 0; i < repetitions; ++i) {
            auto state = inputState;
            size_t n = state.graph().numVertices();
            size_t m = state.graph().numEdges();
            size_t zi = state.numZeroInjection();
            if (drawdir) {
                writePds(state.graph(), fmt::format("{}/0_input.pds", drawdir->string()));
            }

            auto t0 = now();
            reduce(state);
            size_t nReduced = state.graph().numVertices();
            size_t mReduced = state.graph().numEdges();
            size_t ziReduced = state.numZeroInjection();
            size_t pmusReduced = state.numActive();
            size_t blankReduced = nReduced - state.numActive() - state.numInactive();
            auto t1 = now();
            SolveState result = SolveState::Optimal;
            auto reduced = state;
            if (subproblems) {
                auto checkpoint = t1;
                for (auto& substate: state.subproblems()) {
                    if (!substate.allObserved()) {
                        auto tSubproblem = now();
                        double remainingTimeout = std::max(1.0, timeout - std::chrono::duration_cast<std::chrono::seconds>(tSubproblem - checkpoint).count());
                        result = combineSolveState(result, solve(substate, remainingTimeout));
                        state.applySubsolution(substate);
                    }
                }
            } else {
                result = solve(state, timeout);
            }
            auto t2 = now();
            if (drawdir) {
                writePds(reduced.graph(), fmt::format("{}/1_reductions.pds", drawdir->string()));
                writePds(state.graph(), fmt::format("{}/2_solved_preprocessed.pds", drawdir->string()));
            }
            if (solDir) {
                auto name = fs::path(filename).filename().string();
                auto end = name.rfind('.');
                name = name.substr(0, end);
                auto solPath = *solDir / fmt::format("{}_{}.pds", name, i);
                auto solution = inputState.graph();
                for (auto v: solution.vertices()) {
                    if (!state.graph().hasVertex(v)) {
                        solution.getVertex(v).pmu = PmuState::Inactive;
                    } else {
                        if (state.isActive(v)) {
                            solution.getVertex(v).pmu = PmuState::Active;
                        } else if (state.isInactive(v)) {
                            solution.getVertex(v).pmu = PmuState::Inactive;
                        }
                    }
                }
                writePds(solution, solPath);
            }
            size_t pmus = state.numActive();
            fmt::memory_buffer buf;
            using namespace fmt::literals;
            for (auto file: outputs) {
                fmt::print(file,
                           "{name},{run},{pmus},{solved},{result},{t_total},{t_reductions},{t_solver},{n},{m},{zi},{nReduced},{mReduced},{ziReduced},{pmuReduced},{blankReduced}\n",
                           "name"_a = filename,
                           "run"_a = i,
                           "pmus"_a = pmus,
                           "solved"_a = state.allObserved(),
                           "result"_a = result,
                           "t_total"_a = µs(t2 - t0),
                           "t_reductions"_a = µs(t1 - t0),
                           "t_solver"_a = µs(t2 - t1),
                           "n"_a = n,
                           "m"_a = m,
                           "zi"_a = zi,
                           "nReduced"_a = nReduced,
                           "mReduced"_a = mReduced,
                           "ziReduced"_a = ziReduced,
                           "pmuReduced"_a = pmusReduced,
                           "blankReduced"_a = blankReduced
                );
            }
            if (statFile != nullptr) {
                writeSolutionStatistics(filename, state, statFile);
            }
        }
    }
    if (statFile != nullptr) {
        fclose(statFile);
    }
    if (outfile != nullptr) {
        fclose(outfile);
    }
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top