Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • b06fc49
  • /
  • tucker_tensor.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:09f527a8e3e6e6abef3e8f03f23f03c6da286a6e
directory badge Iframe embedding
swh:1:dir:b06fc4959544b8872e597793e4a2463872f2ca64

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
tucker_tensor.py
"""
Core operations on Tucker tensors.
"""

from .base import unfold, tensor_to_vec
from .tenalg import multi_mode_dot
from .tenalg import kronecker

# Author: Jean Kossaifi <jean.kossaifi+tensors@gmail.com>

# License: BSD 3 clause


def tucker_to_tensor(core, factors, skip_factor=None, transpose_factors=False):
    """Converts the Tucker tensor into a full tensor

    Parameters
    ----------
    core : ndarray
       core tensor
    factors : ndarray list
       list of matrices of shape ``(s_i, core.shape[i])``
    skip_factor : None or int, optional, default is None
        if not None, index of a matrix to skip
        Note that in any case, `modes`, if provided, should have a lengh of ``tensor.ndim``
    transpose_factors : bool, optional, default is False
        if True, the matrices or vectors in in the list are transposed

    Returns
    -------
    2D-array
       full tensor of shape ``(factors[0].shape[0], ..., factors[-1].shape[0])``
    """
    return multi_mode_dot(core, factors, skip=skip_factor, transpose=transpose_factors)


def tucker_to_unfolded(core, factors, mode=0, skip_factor=None, transpose_factors=False):
    """Converts the Tucker decomposition into an unfolded tensor (i.e. a matrix)

    Parameters
    ----------
    core : ndarray
        core tensor
    factors : ndarray list
        list of matrices
    mode : None or int list, optional, default is None
    skip_factor : None or int, optional, default is None
        if not None, index of a matrix to skip
        Note that in any case, `modes`, if provided, should have a lengh of ``tensor.ndim``
    transpose_factors : bool, optional, default is False
        if True, the matrices or vectors in in the list are transposed

    Returns
    -------
    2D-array
        unfolded tensor
    """
    return unfold(tucker_to_tensor(core, factors, skip_factor=skip_factor, transpose_factors=transpose_factors), mode)


def tucker_to_vec(core, factors, skip_factor=None, transpose_factors=False):
    """Converts a Tucker decomposition into a vectorised tensor

    Parameters
    ----------
    core : ndarray
        core tensor
    factors : ndarray list
        list of factor matrices
    skip_factor : None or int, optional, default is None
        if not None, index of a matrix to skip
        Note that in any case, `modes`, if provided, should have a lengh of ``tensor.ndim``
    transpose_factors : bool, optional, default is False
        if True, the matrices or vectors in in the list are transposed

    Returns
    -------
    1D-array
        vectorised tensor

    Notes
    -----
    Mathematically equivalent but much slower,
    you can obtain the same result using:

    >>> def tucker_to_vec(core, factors):
    ...     return kronecker(factors).dot(tensor_to_vec(core))
    """
    return tensor_to_vec(tucker_to_tensor(core, factors, skip_factor=skip_factor, transpose_factors=transpose_factors))

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API