Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/jarlg/Yoneda-Ext
20 March 2024, 19:25:33 UTC
  • Code
  • Branches (2)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/dev
    • refs/heads/main
    No releases to show
  • 0316bec
  • /
  • LES.v
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:0a1c37687fdecd23d837ac4cb0d046a741912d6f
origin badgedirectory badge Iframe embedding
swh:1:dir:0316becdb6490aaf3f90d4626351c5e52016464e
origin badgerevision badge
swh:1:rev:0239ae5607dd869ef6ad18aa41b2a27ed5e0ed5d
origin badgesnapshot badge
swh:1:snp:a490b6035923e1853b7217a1b8e3e2fd9c195a6e

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 0239ae5607dd869ef6ad18aa41b2a27ed5e0ed5d authored by Jarl G. Taxerås Flaten on 10 August 2023, 11:37:38 UTC
add doi to README.md
Tip revision: 0239ae5
LES.v
From HoTT Require Import Basics Types WildCat Pointed Truncations
  ExactSequence AbGroups AbSES AbSES.SixTerm.

Require Import Lemmas EquivalenceRelation Ext ES HigherExt XII_5.

Local Open Scope pointed_scope.
Local Open Scope type_scope.


(** * The long exact sequence of Ext groups *)

(** Currently [Ext n] is only a pointed set, but the notion of exactness abelian groups is the same. *)

(** Exactness at the domain of the connecting map, for all n. *)
Global Instance isexact_extn_inclusion_splice `{Univalence} {n : nat}
  {B A G : AbGroup} (E : ES 1 B A)
  : IsExact (Tr (-1))
      (ext_pullback (n:=n) (A:=G) (inclusion E))
      (abses_ext_splice E).
Proof.
  destruct n as [|n].
  (* The case [n=0] follows from [isexact_ext_contra_sixterm_iii]. *)
  { rapply isexact_homotopic_f.
    by apply phomotopy_homotopy_hset. }
  unshelve econstructor.
  { hnf.
    refine (splice_pullback_to_pushout_phomotopy _ _ @* _).
    rewrite abses_pushout_inclusion.
    apply abses_ext_splice_pt. }
  intros [S p]; revert dependent S.
  (** TODO make a tactic for the following. *)
  destruct n.
  1: rapply Trunc_ind; intros S p;
       rapply contr_inhabited_hprop;
       pose proof (K := snd (ext_XII_5_5 (S : ES 1 A G) E) p^).
  2: rapply Quotient_ind_hprop; intros S p;
       rapply contr_inhabited_hprop;
       pose proof (K := snd (ext_XII_5_5 S E) p^).
  all: strip_truncations; destruct K as [K q];
    refine (tr (K; _));
    apply path_sigma_hprop;
    exact q.
Defined.

(** Exactness at the domain of the connecting map, for all n. *)
(** The proof writes out the first part of Lemma XII.5.2. *)
Global Instance isexact_extn_splice_pullback `{Univalence} {n : nat}
  {B A G : AbGroup} (E : AbSES B A)
  : IsExact (Tr (-1))
      (abses_ext_splice (n:=n) (M:=G) E)
      (ext_pullback (projection E)).
Proof.
  destruct n as [|n].
  { rapply isexact_homotopic_if.
    all: by apply phomotopy_homotopy_hset. }
  srapply Build_IsExact.
  { refine (splice_pullback_commute _ _ @* _).
    rewrite <- abses_pullback_projection.
    apply abses_ext_splice_pt. }
  hnf.
  intros [S p]; revert dependent S.
  rapply Quotient_ind_hprop; intros [C [T F]] p.
  rapply contr_inhabited_hprop.
  pose (Fs := abses_pullback (projection E) F).
  assert (U : merely (hfiber (ext_pullback (inclusion Fs)) (es_in T))).
  { rapply isexact_preimage.
    1: apply isexact_extn_inclusion_splice.
    refine ((splice_pullback_commute _ _ _)^ @ _).
    destruct n; exact p. }
  strip_truncations; destruct U as [U q].
  pose (F' := abses_pushout (inclusion Fs) F).
  assert (alpha : merely (hfiber (abses_pushout_ext E)
                            (es_in (F' : ES 1 B Fs)))).
  { rapply (isexact_preimage _ (abses_pushout_ext E)).
    (* TODO Why do we have to specify the map above? *)
    apply (ap tr).
    refine ((abses_pushout_pullback_reorder _ _ _)^ @ _).
    apply abses_pushout_inclusion. }
  strip_truncations; destruct alpha as [alpha r].
  pose proof (r' := (equiv_path_Tr _ _)^-1 r);
    strip_truncations.
  refine (tr (ext_pullback alpha U; _)).
  apply path_sigma_hprop.
  unfold cxfib, Build_pMap, pointed_fun, pr1.
  refine (splice_pullback_to_pushout _ _ _ @ _).
  refine (ap (ext_abses_splice U) r' @ _); clear r'.
  unfold F'.
  refine ((splice_pullback_to_pushout _ _ _)^ @ _).
  rewrite q.
  destruct n; reflexivity.
Defined.

(** Exactness at the middle term, for n > 0. The zeroth level is covered by [isexact_ext_sixterm_ii]. *)
Global Instance isexact_extn_pullback_pullback `{Univalence} {n : nat}
  {B A G : AbGroup} (E : AbSES B A)
  : IsExact (Tr (-1))
      (ext_pullback (n:=n.+1) (A:=G) (projection E))
      (ext_pullback (inclusion E)).
Proof.
  destruct n.
  { rapply isexact_homotopic_if.
    all: by apply phomotopy_homotopy_hset. }
  srapply Build_IsExact.
  { apply phomotopy_homotopy_hset.
    rapply Quotient_ind_hprop; intro F.
    apply qglue.
    refine (transport (fun X => es_meqrel X pt) _^ _).
    { refine (es_pullback_compose _ _ _ @ _).
      refine (es_pullback_homotopic _ _ (f':=grp_homo_const)).
      intro; apply isexact_inclusion_projection. }
    apply zag_to_meqrel.
    apply es_pullback_const_zig. }
  hnf.
  intros [S p]; revert dependent S.
  rapply Quotient_ind_hprop; intros [C [T F]] p.
  rapply contr_inhabited_hprop.
  pose (Fs := abses_pullback (inclusion E) F).
  assert (U : merely (hfiber (ext_pullback (inclusion Fs)) (es_in T))).
  { rapply isexact_preimage.
    1: apply isexact_extn_inclusion_splice.
    refine ((splice_pullback_commute _ _ _)^ @ _).
    destruct n; exact p. }
  strip_truncations; destruct U as [U q].
  pose (iF := abses_pushout (inclusion Fs) F).
  assert (F' : (hfiber
                  (abses_pullback_pmap (projection E))
                  iF)).
  { (* Uses [isexact_abses_pullback]. *)
    rapply (isexact_preimage _ (abses_pullback_pmap (projection E))).
    refine ((abses_pushout_pullback_reorder _ _ _)^ @ _).
    exact (abses_pushout_inclusion Fs). }
  destruct F' as [F' r].
  refine (tr (ext_abses_splice U F'; _)).
  apply path_sigma_hprop.
  unfold cxfib, Build_pMap, pointed_fun, pr1.
  refine (splice_pullback_commute F' (projection E) U @ _).
  refine (ap (fun X => abses_ext_splice X U) r @ _).
  refine ((splice_pullback_to_pushout _ _ _)^ @ _).
  refine (ap (abses_ext_splice F) q @ _).
  destruct n; reflexivity.
Defined.

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API