Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:0a85f652a4b6082d5252d73ce584469db205d10f

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
#include <iostream>

#include <boost/program_options.hpp>

#include <string>
#include <fmt/format.h>
#include <fmt/chrono.h>
#include <chrono>
#include <functional>

#include <filesystem>

#include "pds.hpp"
#include "gurobi_solve.hpp"
#include "draw_grid.hpp"

void printResult(
        const pds::PowerGrid& graph,
        const pds::map<pds::PowerGrid::vertex_descriptor, pds::PmuState>& active,
        const pds::set<pds::PowerGrid::vertex_descriptor>& observed
) {
    size_t active_count = 0, inactive_count = 0, zero_injection_count = 0, observed_count = 0;
    auto filter_active = [&active](auto v) -> bool {
        return active.at(v) == pds::PmuState::Active;
    };
    if (false) {
        auto active = graph.vertices() | ranges::views::filter(filter_active) | ranges::to<std::vector>();
        fmt::print("active nodes: {}\n", active);
    }
    for (const auto &v: graph.vertices()) {
        switch (active.at(v)) {
            case pds::PmuState::Active:
                ++active_count;
                break;
            case pds::PmuState::Inactive:
                ++inactive_count;
                break;
            case pds::PmuState::Blank:
                break;
        }
        zero_injection_count += graph[v].zero_injection;
        observed_count += observed.contains(v);
    }
    fmt::print(
                "graph (n={}, m={}, #active={}, #inactive={}, #observed={}, #zero_injection={})\n",
                graph.numVertices(),
                graph.numEdges(),
                active_count,
                inactive_count,
                observed_count,
                zero_injection_count);
    bool feasible = pds::observed(graph, observed);
    fmt::print("solved: {}\n", feasible);
}

void printGraph(
        const pds::PowerGrid& graph
) {
    std::cout << "graph {\n";
    for (auto v: graph.vertices()) {
        std::cout << graph[v].name << "; ";
    }
    std::cout << "\n";
    for (auto e: graph.edges()) {
        std::cout << graph[graph.source(e)].name << " -- " << graph[graph.target(e)].name << ";\n";
    }
    std::cout << "}\n";
}

auto now() {
    return std::chrono::high_resolution_clock::now();
}

template<typename T>
auto ms(T time) {
    return std::chrono::duration_cast<std::chrono::milliseconds>(time);
}

bool simpleReductions(pds::PdsState& state, const std::function<void(const pds::PdsState&, std::string)>& callback) {
    bool changed = false;
    if (state.disableLowDegree()) { callback(state, "low_degree"); changed = true; }
    while (state.collapseLeaves()) { callback(state, "leaves"); changed = true; }
    if (state.reduceObservedNonZi()) { callback(state, "non_zi"); changed = true; }
    while (state.collapseDegreeTwo()) { callback(state, "path"); changed = true; }
    if (state.collapseObservedEdges()) { callback(state, "observed_edges"); changed = true; }
    return changed;
}

bool applyReductions(pds::PdsState& state, const std::function<void(const pds::PdsState&, std::string)>& callback) {
    bool changed = false;
    while (simpleReductions(state, callback)) { changed = true; }
    if (state.disableObservationNeighborhood()) { callback(state, "observation_neighborhood"); changed = true; }
    if (state.activateNecessaryNodes()) { callback(state, "necessary_nodes"); changed = true; }
    return changed;
}

void processBoost(const std::string& filename) {
    fmt::print("loading graph...\n");
    auto t0 = now();
    auto graph = pds::import_graphml(filename, true);
    auto t1 = now();
    fmt::print("graph loaded in {}\n", ms(t1 - t0)); std::fflush(nullptr);
    //printGraph(graph);
    fmt::print("computing layout...\n");
    auto layout = pds::layoutGraph(graph);
    auto t2 = now();
    fmt::print("layout computed in {}\n", ms(t2 - t1));
    if (graph.numVertices() < 1000) {
        fmt::print("solve exact\n");
        auto t3 = now();
        auto active = graph.vertices()
        | ranges::views::transform([](pds::PowerGrid::vertex_descriptor v) { return std::make_pair(v, pds::PmuState::Blank);})
        | ranges::to<pds::map<pds::PowerGrid::vertex_descriptor, pds::PmuState>>();
        pds::solve_pds(graph, active);
        auto t4 = now();
        fmt::print("solved in {}", ms(t4 - t3));
        pds::set<pds::PowerGrid::vertex_descriptor> observed;
        printResult(graph, active, observed);
        pds::dominate(graph, active, observed);
        pds::propagate(graph, observed);
        printResult(graph, active, observed);
        pds::drawGrid(graph, active, observed, "out/4_solve_input.svg", layout);
    }
    {
        fmt::print("solve with reductions\n");
        pds::PdsState state(graph);
        bool drawReductionSteps = true;
        size_t counter = 0;
        auto drawState = [&](const pds::PdsState& state, const std::string& name) mutable {
            if (drawReductionSteps) {
                pds::drawGrid(state.graph(), state.active(), state.observed(), fmt::format("out/1_red_{:04}_{}.svg", counter, name), layout);
                ++counter;
            }
        };
        pds::drawGrid(state.graph(), state.active(), state.observed(), "out/0_input.svg", layout);
        fmt::print("applying reductions\n");
        auto t_startReduction = now();
        while (applyReductions(state, drawState)) { }
        auto t_endReduction = now();
        fmt::print("reductions took {}\n", ms(t_endReduction - t_startReduction));
        printResult(state.graph(), state.active(), state.observed());
        pds::drawGrid(state.graph(), state.active(), state.observed(), "out/1_red_preprocessed.svg", layout);
        bool drawTrivial = false;
        auto t_solveStart = now();
        bool optimal = true;
        if (true) {
            auto subproblems = state.subproblems(true);
            ranges::sort(subproblems,
                         [](const pds::PdsState &left, const pds::PdsState &right) -> bool {
                             return left.graph().numVertices() < right.graph().numVertices();
                         });
            for (size_t i = 0, j = 0; auto &subproblem: subproblems) {
                if (subproblem.solveTrivial()) {
                    if (drawTrivial) {
                        pds::drawGrid(subproblem.graph(), subproblem.active(), subproblem.observed(),
                                      fmt::format("out/comp_trivial_{:03}.svg", i), layout);
                        ++i;
                    }
                } else {
                    fmt::print("solving subproblem {}\n", j);
                    printResult(subproblem.graph(), subproblem.active(), subproblem.observed());
                    pds::drawGrid(subproblem.graph(), subproblem.active(), subproblem.observed(),
                                  fmt::format("out/comp_{:03}_0unsolved.svg", j), layout);
                    while (applyReductions(subproblem, [](const auto&, const auto&) { }));
                    pds::drawGrid(subproblem.graph(), subproblem.active(), subproblem.observed(),
                                  fmt::format("out/comp_{:03}_1reductions.svg", j), layout);
                    auto active = subproblem.active();
                    auto t_subSolve = now();
                    if (!pds::solve_pds(subproblem.graph(), active, false, 60 * 60)) {
                        fmt::print("infeasible subproblem {}\n", j);
                    }
                    auto t_subEnd = now();
                    for (auto v: subproblem.graph().vertices()) {
                        if (active.at(v) == pds::PmuState::Active) {
                            subproblem.setActive(v);
                        }
                    }
                    fmt::print("subproblem solved in {}\n", ms(t_subEnd - t_subSolve));
                    fmt::print("solve result:\n");
                    printResult(subproblem.graph(), subproblem.active(), subproblem.observed());
                    pds::drawGrid(subproblem.graph(), subproblem.active(), subproblem.observed(),
                                  fmt::format("out/comp_{:03}_2solved.svg", j), layout);
                    ++j;
                }
                for (auto v: subproblem.graph().vertices()) {
                    if (subproblem.isActive(v)) {
                        state.setActive(v);
                    }
                }
            }
        } else {
            auto active = state.active();
            if (!pds::solve_pds(state.graph(), active)) {
                fmt::print("infeasible\n");
            }
            for (auto v: state.graph().vertices()) {
                if (active.at(v) == pds::PmuState::Active) {
                    state.setActive(v);
                }
            }
        }
        auto t_solveEnd = now();
        if (state.allObserved()) {
            fmt::print("solved in {}\n", ms(t_solveEnd - t_solveStart));
        } else {
            fmt::print("not solved in {}\n", ms(t_solveEnd - t_solveStart));
        }
        pds::drawGrid(state.graph(), state.active(), state.observed(), "out/2_solved_preprocessed.svg", layout);
        auto active = state.active();
        pds::set<pds::PowerGrid::vertex_descriptor> observed;
        pds::dominate(graph, active, observed);
        pds::propagate(graph, observed);
        pds::drawGrid(graph, active, observed, "out/3_solved.svg", layout);
        printResult(graph, active, observed);
        auto isUnobserved = [&state] (auto v) -> bool { return !state.isObserved(v); };
        fmt::print("#unobserved = {}", ranges::distance(state.graph().vertices() | ranges::views::filter(isUnobserved)));
    }
}

struct DrawOptions {
    bool drawInput;
    bool drawSolution;
    bool drawReductions;
    bool drawSubproblems;

    bool drawAny() { return drawInput || drawSolution || drawReductions || drawSubproblems; }
};

int run(int argc, const char** argv) {
    using namespace pds;
    using std::string, std::vector;
    using namespace std::string_literals;
    namespace po = boost::program_options;
    namespace fs = std::filesystem;
    po::options_description desc("options");
    desc.add_options()
            ("help,h", "show this help")
            ("graph,f", po::value<string>(), "input graph")
            ("outdir,o", po::value<string>()->default_value("out"), "output directory")
            (
                    "solve",
                    po::value<string>()->default_value("subproblem"),
                    "gurobi solve method. Can be any of [none,full,subproblem]"
            )
            ("print-solve", "print intermediate solve state")
            ("print-state,p", "print solve state after each step")
            ("time-limit,t", po::value<double>()->default_value(600.0), "time limit for gurobi in seconds")
            ("reductions,r", "apply reductions before exact solving")
            (
                    "all-zi,z",
                    po::value<bool>()->default_value(false)->implicit_value(true),
                    "consider all vertices zero-inection"
            )
            (
                    "draw,d",
                    po::value<vector<string>>()->default_value({"none"s}, "none")->implicit_value({"all"s}, "all")->composing(),
                    "can be one of [none,all,input,solution,reductions,subproblems]"
            )
            ;
    po::positional_options_description pos;
    pos.add("graph", 1);
    po::variables_map vm;
    po::store(po::command_line_parser(argc, argv).options(desc).positional(pos).run(), vm);
    po::notify(vm);

    if (vm.count("help")) {
        desc.print(std::cout);
        return 1;
    }

    auto outdir = vm["outdir"].as<string>();
    switch (fs::status(outdir).type()) {
        case fs::file_type::none:
        case fs::file_type::not_found:
            fs::create_directories(outdir);
            break;
        case fs::file_type::directory:
        case fs::file_type::symlink:
            break;
        default:
            fmt::print(stderr, "could not create output directory '{}'", outdir);
            return 1;
    }

    DrawOptions drawOptions{};
    auto drawOption = vm["draw"].as<vector<string>>();
    for (auto d: drawOption) {
        if (d == "none") {
            drawOptions.drawSubproblems = drawOptions.drawReductions = drawOptions.drawSolution = drawOptions.drawInput = false;
        } else if (d == "all") {
            drawOptions.drawSubproblems = drawOptions.drawReductions = drawOptions.drawSolution = drawOptions.drawInput = true;
        } else if (d == "input") {
            drawOptions.drawInput = true;
        } else if (d == "solution") {
            drawOptions.drawSolution = true;
        } else if (d == "reductions") {
            drawOptions.drawReductions = true;
        } else if (d == "subproblems") {
            drawOptions.drawSubproblems = true;
        } else {
            fmt::print(stderr, "invalid draw option {}\n", d);
            return 1;
        }
    }

    if (!set<string>{"none"s, "full"s, "subproblem"s}.contains(vm["solve"].as<string>())) {
        fmt::print(stderr, "invalid solve option: {}\n", vm["solve"].as<string>());
        return 1;
    }

    if (!vm.count("graph")) {
        fmt::print(stderr, "no input given\n");
        return 1;
    }

    PdsState state(import_graphml(vm["graph"].as<string>(), vm["all-zi"].as<bool>()));
    auto input = state;

    map<PowerGrid::vertex_descriptor, Coordinate> layout;
    if (drawOptions.drawAny()) {
        fmt::print("computing layout\n");
        auto t0 = now();
        layout = pds::layoutGraph(state.graph());
        auto t1 = now();
        fmt::print("computed layout in {}\n", ms(t1-t0));
    }

    if (drawOptions.drawInput) {
        drawGrid(state.graph(), state.active(), state.observed(), fmt::format("{}/0_input.svg", outdir), layout);
    }
    auto printState = [&](const PdsState& state) {
        if (vm.count("print-state")) printResult(state.graph(), state.active(), state.observed());
    };
    fmt::print("input:\n");
    printState(state);

    auto tSolveStart = now();
    size_t counter = 0;

    if (vm.count("reductions")) {
        auto drawCallback = [&](const pds::PdsState &state, const std::string &name) mutable {
            if (drawOptions.drawReductions) {
                pds::drawGrid(state.graph(),
                              state.active(),
                              state.observed(),
                              fmt::format("{}/1_red_{:04}_{}.svg", outdir, counter, name),
                              layout);
                ++counter;
            }
        };

        fmt::print("applying reductions\n");
        while (applyReductions(state, drawCallback)) { };
        auto tReductions = now();
        printState(state);
        fmt::print("reductions took {}\n", ms(tReductions - tSolveStart));
    }

    vector subproblems = state.subproblems(true);
    if (drawOptions.drawSubproblems) {
        ranges::sort(subproblems,
                     [](const pds::PdsState &left, const pds::PdsState &right) -> bool {
                         return left.graph().numVertices() < right.graph().numVertices();
                     });
        for (size_t i = 0; auto &subproblem: subproblems) {
            if (!subproblem.allObserved()) {
                pds::drawGrid(
                        subproblem.graph(), subproblem.active(), subproblem.observed(),
                        fmt::format("{}/comp_{:03}_0unsolved.svg", outdir, i), layout);
                ++i;
            }
        }
    }

    for (size_t i = 0; auto &subproblem: subproblems) {
        auto tSub = now();
        //if (vm.count("reductions")) {
        //    applyReductions(state, [](const auto&, const auto&) {});
        //    if (drawOptions.drawSubproblems && drawOptions.drawReductions) {
        //        pds::drawGrid(
        //                subproblem.graph(), subproblem.active(), subproblem.observed(),
        //                fmt::format("{}/comp_{:03}_1reductions.svg", outdir, i), layout);
        //    }
        //    printState(state);
        //}
        if (!subproblem.solveTrivial()) {
            fmt::print("solving subproblem {}\n", i);
            printState(state);
            if (vm["solve"].as<string>() == "subproblem") {
                solve_pds(subproblem, vm.count("print-solve"), vm["time-limit"].as<double>());
                for (auto v: subproblem.graph().vertices()) {
                    if (subproblem.isActive(v)) {
                        state.setActive(v);
                    }
                }
                auto tSubEnd = now();
                fmt::print("solved subproblem {} in {}", i, ms(tSubEnd - tSub));
            }
            if (drawOptions.drawSubproblems && drawOptions.drawSolution) {
                pds::drawGrid(
                        subproblem.graph(), subproblem.active(), subproblem.observed(),
                        fmt::format("{}/comp_{:03}_2solved.svg", outdir, i), layout);
            }
            ++i;
        }
    }

    if (vm["solve"].as<string>() == "full") {
        solve_pds(state, vm.count("print-solve"), vm["time-limit"].as<double>());
    }
    for (auto v: state.graph().vertices()) {
        if (state.isActive(v)) {
            input.setActive(v);
        }
    }
    auto tSolveEnd = now();
    if (drawOptions.drawSolution) {
        drawGrid(state.graph(), state.active(), state.observed(), fmt::format("{}/2_solved_preprocessed.svg", outdir), layout);
        drawGrid(input.graph(), input.active(), input.observed(), fmt::format("{}/3_solved.svg", outdir), layout);
    }
    fmt::print("solved in {}\n", ms(tSolveEnd - tSolveStart));
    printState(state);

    return 0;
}

int main(int argc, const char** argv) {
    //std::string filename = argv[1];
    //processBoost(filename);
    run(argc, argv);
    return 0;
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API