Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:0b1d56433695b2ee3dc3b5dfe8383e474059a5eb

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
# -*- coding: utf-8 -*-
#for some reason this import has to come first, otherwise gives segfault
from transformers import BertTokenizer, BertModel
import datetime
import argparse
import uuid
import torch
import random
import numpy as np
import pickle
import os
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
from torch.optim.lr_scheduler import StepLR
from utils.util import Utils
from torchtext import data
from torchtext import datasets
from torch.utils.data import Dataset, DataLoader
from models.decoder_stgcn import Decoder
#from models.navigator_net import Navigator, NavigatorOnlySem, NavigatorOnlySent



from data.dataset_sn import SignProdDataset
import spacy
import nltk
from torch import nn
import torch.nn.functional as fnn
from torch.autograd import Variable
from torch.optim import SGD
from torchvision.datasets import LSUN
from torchvision import transforms
from torch.utils.data import Dataset
from torchvision.utils import make_grid

PAD_IDX = 0
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
max_input_length = tokenizer.max_model_input_sizes['bert-base-uncased']
nlp = spacy.load("en_core_web_sm")

class Navigator(nn.Module):

    def __init__(
        self, 
        in_channels, 
        out_channels, 
        depth=1,
        device = None
      ):
        super(Navigator, self).__init__()
         
        self.model = nn.Sequential(
          nn.Linear(1536, 3072),
          nn.Tanh(),
          nn.Linear(3072, 3072),
          nn.Tanh(),
          nn.Linear(3072, 2304),
          nn.Tanh(),
          nn.Linear(2304, 1536)
        )
       
    def forward(self, sent_feature, sem_feature):
        x = torch.cat([sent_feature, sem_feature], dim = 1)
        x = self.model(x)
        return x


def tokenize_and_cut(sentence):
    tokens = tokenizer.tokenize(sentence) 
    tokens = tokens[:max_input_length-2]
    return tokens

def get_pos(text):
    doc = nlp(text)
    pos_list = list()
    for token in doc:
        pos_list.append(token.pos_)
    return pos_list

def get_dataset(data_root, batch_size, device, train = True):

    init_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.cls_token)
    eos_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
    pad_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
    unk_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.unk_token)

    TEXT = data.Field(
        batch_first = True,
        use_vocab = False,
        tokenize = tokenize_and_cut,
        preprocessing = tokenizer.convert_tokens_to_ids,
        init_token = init_token_idx,
        eos_token = eos_token_idx,
        pad_token = pad_token_idx,
        unk_token = unk_token_idx
    )

    RAW = data.RawField()

    dataset = SignProdDataset(
        data_root,
        train,
        fields = [('src', TEXT), ('kps', RAW), ("sent_feature", RAW), ("sem_feature", RAW), ("pos", RAW), ("aus", RAW), ("z", RAW), ("idx", RAW), ("file_name", RAW)]
    )

    iterator = data.BucketIterator(
        dataset = dataset,
        batch_size=batch_size,
        device=device, 
        sort_key=lambda x: len(x.src),
        repeat=False, 
        sort=False, 
        shuffle=True if train else False,
        sort_within_batch= True if train else False
    )

    return iterator

def save_ckpt(model, out_fp):
    torch.save(model.state_dict(), out_fp)

def save_Zs(output_root, Z):
    with open(output_root, "wb") as handler:
        pickle.dump(Z, handler)

def read_pickle(file_fp):
    with open(file_fp, "rb") as handler:
        return pickle.load(handler)

def read_sentences(dataset_root, files):
    sentences = list()
    for idx, file_ in enumerate(files[:50]):
        file_fp = os.path.join(dataset_root, file_)
        instance = read_pickle(file_fp)
        sentences.append((idx, instance["text"]))
    return sentences


def get_k_similar_sentences(pos, sentences, k):
    sentences_dist = dict()
    pos_rev_dict = build_pos_rev_dict()
    for idx, sentence in sentences:
        pos_s = get_pos(sentence)
        pos_s_mapped = [pos_rev_dict[p] for p in pos_s]
        pos_mapped = [pos_rev_dict[p] for p in pos]
        pos_s_mapped = "".join(pos_s_mapped)
        pos_mapped = "".join(pos_mapped)
        distance = nltk.edit_distance(pos_s_mapped, pos_mapped)

        if distance not in sentences_dist:
            sentences_dist[distance] = [idx]
        else:
            sentences_dist[distance].append(idx)
    
    sorted_keys = list(sorted(sentences_dist.keys()))
    selected_sentences = list()

    for key in sorted_keys:
        sentences = sentences_dist[key]
        for s in sentences:
            if len(selected_sentences) == k:
                return selected_sentences
            selected_sentences.append(s)
    
                
def build_pos_rev_dict():

    return dict(
        ADJ = "a",
        ADP = "b",
        ADV = "c",
        AUX = "d",
        CONJ = "e",
        CCONJ = "f",
        DET = "g",
        INTJ = "h",
        NOUN = "i",
        NUM = "j",
        PART = "k",
        PRON = "l",
        PROPN = "m",
        PUNCT = "n",
        SCONJ = "o",
        SYM = "p",
        VERB = "q",
        X = "r",
        SPACE = "s"
    )


def project_l2_ball(z):
    """ project the vectors in z onto the l2 unit norm ball"""
    return z / np.maximum(np.sqrt(np.sum(z**2, axis=1))[:, np.newaxis], 1)

def validate(test_iterator, navigator, Z, device):
    epoch_loss = []
    navigator.eval()
    for idx, batch in enumerate(iter(test_iterator)):
        sent_feature = torch.Tensor(batch.sent_feature).to(device)
        sem_feature = torch.Tensor(batch.sem_feature).to(device)
        Zi = torch.Tensor(Z[batch.idx]).to(device).view(-1,768*2)        
        Z_prev = navigator(sent_feature,sem_feature)
        loss = torch.sum(1 - fnn.cosine_similarity(Zi,Z_prev))
        epoch_loss.append(loss.item())
    print("Validation loss: {}".format(sum(epoch_loss)/len(epoch_loss)))

def main(args):

    SEED = 1234
    random.seed(SEED)
    np.random.seed(SEED)
    torch.manual_seed(SEED)
    torch.backends.cudnn.deterministic = True
    device = torch.device('cuda:{}'.format(args.device)) if args.device != -1 else torch.device('cuda')
    N_EPOCHS = args.epochs
    experiment_name = "lr:{}-bs:{}-e:{}-ts:{}".format(
        args.learning_rate, 
        args.batch_size, 
        args.epochs,
        datetime.datetime.now()
    )

    #experiment_folder = os.path.join(args.tensorboard_root, experiment_name)
    #os.makedirs(experiment_folder, exist_ok = True)
    #tb_writer = SummaryWriter(log_dir = experiment_folder)    
    
    #encoder = SentiTransformerEncoder().to(device)
    #decoder = Decoder(device).to(device)
    #decoder.load_state_dict(torch.load(args.decoder_ckpt))
    #decoder.eval()
    
    navigator = Navigator(768*2,768*2).to(device)
    #navigator = NavigatorOnlySem(768*2,768*2).to(device)
    
    train_iterator = get_dataset(
        args.dataset_root, 
        args.batch_size, 
        device, 
        train = True
    )

    test_iterator = get_dataset(
        args.dataset_root, 
        args.batch_size, 
        device, 
        train = False
    )
    
    optimizer_n = optim.Adam([
        {'params': navigator.parameters(), 'lr': args.learning_rate, 'betas' : (0.5, 0.999)}
    ])
    
    scheduler_n = StepLR(optimizer_n, step_size = args.save_interval, gamma = 0.5)
    
    Z = read_pickle(args.zs_ckpt)

    mse = nn.MSELoss()
    
   
    step = 0
    
    for epoch in range(N_EPOCHS):        
        epoch_loss = []

        for idx, batch in enumerate(iter(train_iterator)):
            sent_feature = torch.Tensor(batch.sent_feature).to(device)
            sem_feature = torch.Tensor(batch.sem_feature).to(device)
            Zi = torch.Tensor(Z[batch.idx]).to(device).view(-1,768*2)
            
            optimizer_n.zero_grad()
            Z_prev = navigator(sent_feature,sem_feature)

            cosine_distance = torch.sum(1 - fnn.cosine_similarity(Zi,Z_prev))

            #mse_distance = mse(Zi, Z_prev)
           
            loss = cosine_distance
            loss.backward()
            optimizer_n.step()
            scheduler_n.step()

            #tb_writer.add_scalar("train/Cosine Distance Loss", loss.item(), step)
            #tb_writer.add_scalar("train/L2 Loss", mse_distance.item(), step)
            epoch_loss.append(loss.item())
            
            step = step + 1 
            
            if step % args.save_interval == 0 and step > 0:
                #validate(test_iterator, navigator, Z, device)
                navigator.train()
                try:
                    model_folder = os.path.join(args.ckpt_root, experiment_name, "step_{}".format(step))
                    os.makedirs(model_folder, exist_ok = True)

                    network_fp = os.path.join(model_folder, "navigator.pth")
                    save_ckpt(navigator, network_fp)

                except:
                    import traceback
                    print(traceback.format_exc())
                    exit()
                    #encoder.train()            
            
            
        print("Epoch loss: {} -- Step: {}".format(sum(epoch_loss)/len(epoch_loss), step))  


if __name__ == "__main__":

    parser = argparse.ArgumentParser(description='Process some integers.')

    parser.add_argument('--device', '-dev', type = int, default = 0)
    parser.add_argument('--batch_size', '-bs', type = int, default = 42)
    parser.add_argument('--epochs', '-e', type = int, default = 10000)     
    parser.add_argument('--save_interval', '-si', type = int, default = 15000)
    parser.add_argument('--dataset_root', '-d', type = str, default = "/home/rafael/data/how2sign_dataset_speaker1_clean/train/")
    parser.add_argument('--outputs_root', '-ot', type = str, default = "/home/rafael/data/how2sign_dataset_speaker1_clean/results/")
    parser.add_argument('--decoder_ckpt', '-dckpt', type = str, default = "/home/rafael/masters/to_move/step_150000_speaker1_h2s/decoder.pth")
    parser.add_argument('--zs_ckpt', '-zckpt', type = str, default = "/home/rafael/masters/to_move/step_150000_speaker1_h2s/Zs.pkl")
   
    parser.add_argument('--learning_rate', '-lr', type = float, default = 0.0001)
    parser.add_argument('--learning_rate_idenc', '-lridenc', type = float, default = 0.015)
    parser.add_argument('--learning_rate_dec', '-lrdec', type = float, default = 0.015)
    parser.add_argument('--learning_rate_disc', '-lrdisc', type = float, default = 0.015)
 
    parser.add_argument('--ckpt_root', '-ct', type = str, default = "/home/rafael/masters/to_move/navigator_signer01_h2s_clean")
    parser.add_argument('--tensorboard_root', '-tr', type = str, default = "/home/rafael/masters/to_move/navigator_signer01_h2s_clean")


    args = parser.parse_args()
    main(args)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API