https://github.com/verlab/empowering-sign-language
Tip revision: aff4c3b3561254d2f7a7be3fb4631b0f4a3d179d authored by Rafael Vieira on 13 September 2024, 13:32:42 UTC
Update README.md
Update README.md
Tip revision: aff4c3b
train_space_navigator.py
# -*- coding: utf-8 -*-
#for some reason this import has to come first, otherwise gives segfault
from transformers import BertTokenizer, BertModel
import datetime
import argparse
import uuid
import torch
import random
import numpy as np
import pickle
import os
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
from torch.optim.lr_scheduler import StepLR
from utils.util import Utils
from torchtext import data
from torchtext import datasets
from torch.utils.data import Dataset, DataLoader
from models.decoder_stgcn import Decoder
#from models.navigator_net import Navigator, NavigatorOnlySem, NavigatorOnlySent
from data.dataset_sn import SignProdDataset
import spacy
import nltk
from torch import nn
import torch.nn.functional as fnn
from torch.autograd import Variable
from torch.optim import SGD
from torchvision.datasets import LSUN
from torchvision import transforms
from torch.utils.data import Dataset
from torchvision.utils import make_grid
PAD_IDX = 0
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
max_input_length = tokenizer.max_model_input_sizes['bert-base-uncased']
nlp = spacy.load("en_core_web_sm")
class Navigator(nn.Module):
def __init__(
self,
in_channels,
out_channels,
depth=1,
device = None
):
super(Navigator, self).__init__()
self.model = nn.Sequential(
nn.Linear(1536, 3072),
nn.Tanh(),
nn.Linear(3072, 3072),
nn.Tanh(),
nn.Linear(3072, 2304),
nn.Tanh(),
nn.Linear(2304, 1536)
)
def forward(self, sent_feature, sem_feature):
x = torch.cat([sent_feature, sem_feature], dim = 1)
x = self.model(x)
return x
def tokenize_and_cut(sentence):
tokens = tokenizer.tokenize(sentence)
tokens = tokens[:max_input_length-2]
return tokens
def get_pos(text):
doc = nlp(text)
pos_list = list()
for token in doc:
pos_list.append(token.pos_)
return pos_list
def get_dataset(data_root, batch_size, device, train = True):
init_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.cls_token)
eos_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
pad_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
unk_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.unk_token)
TEXT = data.Field(
batch_first = True,
use_vocab = False,
tokenize = tokenize_and_cut,
preprocessing = tokenizer.convert_tokens_to_ids,
init_token = init_token_idx,
eos_token = eos_token_idx,
pad_token = pad_token_idx,
unk_token = unk_token_idx
)
RAW = data.RawField()
dataset = SignProdDataset(
data_root,
train,
fields = [('src', TEXT), ('kps', RAW), ("sent_feature", RAW), ("sem_feature", RAW), ("pos", RAW), ("aus", RAW), ("z", RAW), ("idx", RAW), ("file_name", RAW)]
)
iterator = data.BucketIterator(
dataset = dataset,
batch_size=batch_size,
device=device,
sort_key=lambda x: len(x.src),
repeat=False,
sort=False,
shuffle=True if train else False,
sort_within_batch= True if train else False
)
return iterator
def save_ckpt(model, out_fp):
torch.save(model.state_dict(), out_fp)
def save_Zs(output_root, Z):
with open(output_root, "wb") as handler:
pickle.dump(Z, handler)
def read_pickle(file_fp):
with open(file_fp, "rb") as handler:
return pickle.load(handler)
def read_sentences(dataset_root, files):
sentences = list()
for idx, file_ in enumerate(files[:50]):
file_fp = os.path.join(dataset_root, file_)
instance = read_pickle(file_fp)
sentences.append((idx, instance["text"]))
return sentences
def get_k_similar_sentences(pos, sentences, k):
sentences_dist = dict()
pos_rev_dict = build_pos_rev_dict()
for idx, sentence in sentences:
pos_s = get_pos(sentence)
pos_s_mapped = [pos_rev_dict[p] for p in pos_s]
pos_mapped = [pos_rev_dict[p] for p in pos]
pos_s_mapped = "".join(pos_s_mapped)
pos_mapped = "".join(pos_mapped)
distance = nltk.edit_distance(pos_s_mapped, pos_mapped)
if distance not in sentences_dist:
sentences_dist[distance] = [idx]
else:
sentences_dist[distance].append(idx)
sorted_keys = list(sorted(sentences_dist.keys()))
selected_sentences = list()
for key in sorted_keys:
sentences = sentences_dist[key]
for s in sentences:
if len(selected_sentences) == k:
return selected_sentences
selected_sentences.append(s)
def build_pos_rev_dict():
return dict(
ADJ = "a",
ADP = "b",
ADV = "c",
AUX = "d",
CONJ = "e",
CCONJ = "f",
DET = "g",
INTJ = "h",
NOUN = "i",
NUM = "j",
PART = "k",
PRON = "l",
PROPN = "m",
PUNCT = "n",
SCONJ = "o",
SYM = "p",
VERB = "q",
X = "r",
SPACE = "s"
)
def project_l2_ball(z):
""" project the vectors in z onto the l2 unit norm ball"""
return z / np.maximum(np.sqrt(np.sum(z**2, axis=1))[:, np.newaxis], 1)
def validate(test_iterator, navigator, Z, device):
epoch_loss = []
navigator.eval()
for idx, batch in enumerate(iter(test_iterator)):
sent_feature = torch.Tensor(batch.sent_feature).to(device)
sem_feature = torch.Tensor(batch.sem_feature).to(device)
Zi = torch.Tensor(Z[batch.idx]).to(device).view(-1,768*2)
Z_prev = navigator(sent_feature,sem_feature)
loss = torch.sum(1 - fnn.cosine_similarity(Zi,Z_prev))
epoch_loss.append(loss.item())
print("Validation loss: {}".format(sum(epoch_loss)/len(epoch_loss)))
def main(args):
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
device = torch.device('cuda:{}'.format(args.device)) if args.device != -1 else torch.device('cuda')
N_EPOCHS = args.epochs
experiment_name = "lr:{}-bs:{}-e:{}-ts:{}".format(
args.learning_rate,
args.batch_size,
args.epochs,
datetime.datetime.now()
)
#experiment_folder = os.path.join(args.tensorboard_root, experiment_name)
#os.makedirs(experiment_folder, exist_ok = True)
#tb_writer = SummaryWriter(log_dir = experiment_folder)
#encoder = SentiTransformerEncoder().to(device)
#decoder = Decoder(device).to(device)
#decoder.load_state_dict(torch.load(args.decoder_ckpt))
#decoder.eval()
navigator = Navigator(768*2,768*2).to(device)
#navigator = NavigatorOnlySem(768*2,768*2).to(device)
train_iterator = get_dataset(
args.dataset_root,
args.batch_size,
device,
train = True
)
test_iterator = get_dataset(
args.dataset_root,
args.batch_size,
device,
train = False
)
optimizer_n = optim.Adam([
{'params': navigator.parameters(), 'lr': args.learning_rate, 'betas' : (0.5, 0.999)}
])
scheduler_n = StepLR(optimizer_n, step_size = args.save_interval, gamma = 0.5)
Z = read_pickle(args.zs_ckpt)
mse = nn.MSELoss()
step = 0
for epoch in range(N_EPOCHS):
epoch_loss = []
for idx, batch in enumerate(iter(train_iterator)):
sent_feature = torch.Tensor(batch.sent_feature).to(device)
sem_feature = torch.Tensor(batch.sem_feature).to(device)
Zi = torch.Tensor(Z[batch.idx]).to(device).view(-1,768*2)
optimizer_n.zero_grad()
Z_prev = navigator(sent_feature,sem_feature)
cosine_distance = torch.sum(1 - fnn.cosine_similarity(Zi,Z_prev))
#mse_distance = mse(Zi, Z_prev)
loss = cosine_distance
loss.backward()
optimizer_n.step()
scheduler_n.step()
#tb_writer.add_scalar("train/Cosine Distance Loss", loss.item(), step)
#tb_writer.add_scalar("train/L2 Loss", mse_distance.item(), step)
epoch_loss.append(loss.item())
step = step + 1
if step % args.save_interval == 0 and step > 0:
#validate(test_iterator, navigator, Z, device)
navigator.train()
try:
model_folder = os.path.join(args.ckpt_root, experiment_name, "step_{}".format(step))
os.makedirs(model_folder, exist_ok = True)
network_fp = os.path.join(model_folder, "navigator.pth")
save_ckpt(navigator, network_fp)
except:
import traceback
print(traceback.format_exc())
exit()
#encoder.train()
print("Epoch loss: {} -- Step: {}".format(sum(epoch_loss)/len(epoch_loss), step))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--device', '-dev', type = int, default = 0)
parser.add_argument('--batch_size', '-bs', type = int, default = 42)
parser.add_argument('--epochs', '-e', type = int, default = 10000)
parser.add_argument('--save_interval', '-si', type = int, default = 15000)
parser.add_argument('--dataset_root', '-d', type = str, default = "/home/rafael/data/how2sign_dataset_speaker1_clean/train/")
parser.add_argument('--outputs_root', '-ot', type = str, default = "/home/rafael/data/how2sign_dataset_speaker1_clean/results/")
parser.add_argument('--decoder_ckpt', '-dckpt', type = str, default = "/home/rafael/masters/to_move/step_150000_speaker1_h2s/decoder.pth")
parser.add_argument('--zs_ckpt', '-zckpt', type = str, default = "/home/rafael/masters/to_move/step_150000_speaker1_h2s/Zs.pkl")
parser.add_argument('--learning_rate', '-lr', type = float, default = 0.0001)
parser.add_argument('--learning_rate_idenc', '-lridenc', type = float, default = 0.015)
parser.add_argument('--learning_rate_dec', '-lrdec', type = float, default = 0.015)
parser.add_argument('--learning_rate_disc', '-lrdisc', type = float, default = 0.015)
parser.add_argument('--ckpt_root', '-ct', type = str, default = "/home/rafael/masters/to_move/navigator_signer01_h2s_clean")
parser.add_argument('--tensorboard_root', '-tr', type = str, default = "/home/rafael/masters/to_move/navigator_signer01_h2s_clean")
args = parser.parse_args()
main(args)