% Generated by roxygen2: do not edit by hand % Please edit documentation in R/bayesfactor_models.R \name{bayesfactor_models} \alias{bayesfactor_models} \alias{bf_models} \title{Bayes Factors (BF) for model comparison} \usage{ bayesfactor_models(..., denominator = 1, verbose = TRUE) bf_models(..., denominator = 1, verbose = TRUE) } \arguments{ \item{...}{Fitted models (see details), all fit on the same data, or a single \code{BFBayesFactor} object (see 'Details').} \item{denominator}{Either an integer indicating which of the models to use as the denominator, or a model to be used as a denominator. Ignored for \code{BFBayesFactor}.} \item{verbose}{Toggle off warnings.} } \value{ A data frame containing the models' formulas (reconstructed fixed and random effects) and their BFs, that prints nicely. } \description{ This function computes or extracts Bayes factors from fitted models. \cr \cr The \code{bf_*} function is an alias of the main function. } \details{ If the passed models are supported by \pkg{insight} the DV of all models will be tested for equality (else this is assumed to be true), and the models' terms will be extracted (allowing for follow-up analysis with \code{bayesfactor_inclusion}). \itemize{ \item For \code{brmsfit} or \code{stanreg} models, Bayes factors are computed using the \CRANpkg{bridgesampling} package. \itemize{ \item \code{brmsfit} models must have been fitted with \code{save_all_pars = TRUE}. \item \code{stanreg} models must have been fitted with a defined \code{diagnostic_file}. } \item For \code{BFBayesFactor}, \code{bayesfactor_models()} is mostly a wraparoud \code{BayesFactor::extractBF()}. \item For all other model types (supported by \CRANpkg{insight}), BIC approximations are used to compute Bayes factors. } In order to correctly and precisely estimate Bayes factors, a rule of thumb are the 4 P's: \strong{P}roper \strong{P}riors and \strong{P}lentiful \strong{P}osterior (i.e. probably at leat 40,000 samples instead of the default of 4,000). \cr \cr A Bayes factor greater than 1 can be interpereted as evidence against the compared-to model (the denominator). One convention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the denominator model (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the denominator model) (\cite{Wetzels et al. 2011}). \cr \cr See also \href{https://easystats.github.io/bayestestR/articles/bayes_factors.html}{the Bayes factors vignette}. } \examples{ # With lm objects: # ---------------- lm1 <- lm(Sepal.Length ~ 1, data = iris) lm2 <- lm(Sepal.Length ~ Species, data = iris) lm3 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris) lm4 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris) bayesfactor_models(lm1, lm2, lm3, lm4, denominator = 1) bayesfactor_models(lm2, lm3, lm4, denominator = lm1) # same result bayesfactor_models(lm1, lm2, lm3, lm4, denominator = lm1) # same result \dontrun{ # With lmerMod objects: # --------------------- if (require("lme4")) { lmer1 <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris) lmer2 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris) lmer3 <- lmer( Sepal.Length ~ Petal.Length + (Petal.Length | Species) + (1 | Petal.Width), data = iris ) bayesfactor_models(lmer1, lmer2, lmer3, denominator = 1) bayesfactor_models(lmer1, lmer2, lmer3, denominator = lmer1) } # rstanarm models # --------------------- # (note that a unique diagnostic_file MUST be specified in order to work) if (require("rstanarm")) { stan_m0 <- stan_glm(Sepal.Length ~ 1, data = iris, family = gaussian(), diagnostic_file = file.path(tempdir(), "df0.csv") ) stan_m1 <- stan_glm(Sepal.Length ~ Species, data = iris, family = gaussian(), diagnostic_file = file.path(tempdir(), "df1.csv") ) stan_m2 <- stan_glm(Sepal.Length ~ Species + Petal.Length, data = iris, family = gaussian(), diagnostic_file = file.path(tempdir(), "df2.csv") ) bayesfactor_models(stan_m1, stan_m2, denominator = stan_m0) } # brms models # -------------------- # (note the save_all_pars MUST be set to TRUE in order to work) if (require("brms")) { brm1 <- brm(Sepal.Length ~ 1, data = iris, save_all_pars = TRUE) brm2 <- brm(Sepal.Length ~ Species, data = iris, save_all_pars = TRUE) brm3 <- brm( Sepal.Length ~ Species + Petal.Length, data = iris, save_all_pars = TRUE ) bayesfactor_models(brm1, brm2, brm3, denominator = 1) } # BayesFactor # --------------------------- if (require("BayesFactor")) { data(puzzles) BF <- anovaBF(RT ~ shape * color + ID, data = puzzles, whichRandom = "ID", progress = FALSE ) BF bayesfactor_models(BF) # basically the same } } } \references{ \itemize{ \item Gronau, Q. F., Wagenmakers, E. J., Heck, D. W., and Matzke, D. (2019). A simple method for comparing complex models: Bayesian model comparison for hierarchical multinomial processing tree models using Warp-III bridge sampling. Psychometrika, 84(1), 261-284. \item Kass, R. E., and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. \item Robert, C. P. (2016). The expected demise of the Bayes factor. Journal of Mathematical Psychology, 72, 33–37. \item Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic bulletin & review, 14(5), 779-804. \item Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J. (2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using 855 t Tests. Perspectives on Psychological Science, 6(3), 291–298. \doi{10.1177/1745691611406923} } } \author{ Mattan S. Ben-Shachar }