Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/nFactors
24 October 2022, 04:44:14 UTC
  • Code
  • Branches (47)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0
    • refs/tags/2.1
    • refs/tags/2.2
    • refs/tags/2.3
    • refs/tags/2.3.1
    • refs/tags/2.3.2
    • refs/tags/2.3.3
    • refs/tags/2.3.3.1
    • refs/tags/2.4.1
    • refs/tags/2.4.1.1
    • refs/tags/R-2.10.0
    • refs/tags/R-2.10.1
    • refs/tags/R-2.11.0
    • refs/tags/R-2.11.1
    • refs/tags/R-2.12.0
    • refs/tags/R-2.12.1
    • refs/tags/R-2.12.2
    • refs/tags/R-2.13.0
    • refs/tags/R-2.13.1
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-2.4.0
    • refs/tags/R-2.4.1
    • refs/tags/R-2.5.0
    • refs/tags/R-2.5.1
    • refs/tags/R-2.6.0
    • refs/tags/R-2.6.1
    • refs/tags/R-2.6.2
    • refs/tags/R-2.7.0
    • refs/tags/R-2.7.1
    • refs/tags/R-2.7.2
    • refs/tags/R-2.8.0
    • refs/tags/R-2.8.1
    • refs/tags/R-2.9.0
    • refs/tags/R-2.9.1
    • refs/tags/R-2.9.2
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 3f0744a
  • /
  • man
  • /
  • nBentler.rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:0d55e638513659e75c40b24f02b3f0a99fd4f2cf
origin badgedirectory badge Iframe embedding
swh:1:dir:c76f12e62c82fa8611fd156cc48b3814e22e6aad
origin badgerevision badge
swh:1:rev:592b098fc786911733da1c1953e58c9d1c2e9517
origin badgesnapshot badge
swh:1:snp:788a101542b9bf7049cc9068e737c43bfa0ac40a
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 592b098fc786911733da1c1953e58c9d1c2e9517 authored by Gilles Raiche on 10 April 2010, 00:00:00 UTC
version 2.3.3
Tip revision: 592b098
nBentler.rd
\name{nBentler}
\alias{nBentler}

\title{ Bentler and Yuan's Procedure to Determine the Number of Components/Factors}

\description{
  This function computes the Bentler and Yuan's indices for determining the
  number of components/factors to retain.
 }
 

\usage{
 nBentler(x, N, log=TRUE, alpha=0.05, cor=TRUE, details=TRUE,
         minPar=c(min(lambda) - abs(min(lambda)) +.001, 0.001),
         maxPar=c(max(lambda),
                  lm(lambda ~ I(length(lambda):1))$coef[2]), ...)
 }


\arguments{
  \item{x}{          numeric: a \code{vector} of eigenvalues, a \code{matrix} of
                     correlations or of covariances or a \code{data.frame} of data}
  \item{N}{          numeric: number of subjects.}
  \item{log}{        logical: if \code{TRUE} does the maximization on the log values.}
  \item{alpha}{      numeric: statistical significance level.}
  \item{cor}{        logical: if \code{TRUE} computes eigenvalues from a correlation
                     matrix, else from a covariance matrix}
  \item{details}{    logical: if \code{TRUE} also returns detains about the
                     computation for each eigenvalue.}
  \item{minPar}{     numeric: minimums for the coefficient of the linear trend to maximize.}
  \item{maxPar}{     numeric: maximums for the coefficient of the linear trend to maximize.}
  \item{...}{        variable: additionnal parameters to give to the \code{cor} or
                     \code{cov} functions}
 }
 

\details{
  The implemented Bentler and Yuan's procedure must be used with care because
  the minimized function is not always stable, as Bentler and Yan (1996, 1998)
  already noted. In many
  cases, constraints must applied to obtain a solution,
  as the actual implementation did, but the user can modify
  these constraints.

  The hypothesis tested (Bentler and Yuan, 1996, equation 10) is: \cr \cr

 (1)  \eqn{\qquad \qquad H_k: \lambda_{k+i} = \alpha + \beta x_i, (i = 1, \ldots, q)} \cr

 The solution of the following simultaneous equations is needed to
 find \eqn{(\alpha, \beta) \in} \cr

 (2)  \eqn{\qquad \qquad f(x) = \sum_{i=1}^q \frac{ [ \lambda_{k+j} - N  \alpha + \beta x_j ]   x_j}{(\alpha + \beta x_j)^2}  = 0} \cr \cr
 and  \eqn{\qquad \qquad g(x) = \sum_{i=1}^q \frac{  \lambda_{k+j} - N  \alpha + \beta x_j   x_j}{(\alpha + \beta x_j)^2}  = 0} \cr

 The solution to this system of equations was implemented by minimizing the following equation: \cr

 (3)   \eqn{\qquad \qquad (\alpha, \beta) \in \inf{[h(x)]} = \inf{\log{[f(x)^2 + g(x)^2}}]} \cr

 The likelihood ratio test \eqn{LRT} proposed by Bentler and Yuan (1996, equation 7) follows a
 \eqn{\chi^2} probability distribution with \eqn{q-2} degrees of freedom and
 is equal to: \cr

 (4)  \eqn{\qquad \qquad LRT = N(k - p)\left\{ {\ln \left( {{n \over N}} \right) + 1} \right\}
       - N\sum\limits_{j = k + 1}^p {\ln \left\{ {{{\lambda _j } \over {\alpha  + \beta x_j }}} \right\}}
       + n\sum\limits_{j = k + 1}^p {\left\{ {{{\lambda _j } \over {\alpha  + \beta x_j }}} \right\}} } \cr

 With \eqn{p} beeing the number of eigenvalues, \eqn{k} the number of eigenvalues to test,
 \eqn{q} the \eqn{p-k} remaining eigenvalues, \eqn{N} the sample size, and \eqn{n = N-1}.
 Note that there is an error in the Bentler and Yuan equation, the variables
 \eqn{N} and \eqn{n} beeing inverted in the preceeding equation 4.

 A better strategy proposed by Bentler an Yuan (1998) is to used a minimized
 \eqn{\chi^2} solution. This strategy will be implemented in a future version
 of the \pkg{nFactors} package.
 }


\value{
  \item{nFactors}{ numeric: vector of the number of factors retained by the
                   Bentler and Yuan's procedure. }
  \item{details}{  numeric: matrix of the details of the computation.}
 }
 
\references{
 Bentler, P. M. and Yuan, K.-H. (1996). Test of linear trend in eigenvalues of
  a covariance matrix with application to data analysis.
  \emph{British Journal of Mathematical and Statistical Psychology, 49}, 299-312.
 
 Bentler, P. M. and Yuan, K.-H. (1998). Test of linear trend in the smallest
  eigenvalues of the correlation matrix. \emph{Psychometrika, 63}(2), 131-144.
 }

\author{ 
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/} \cr \cr
    David Magis \cr
    Departement de mathematiques \cr
    Universite de Liege \cr
    \email{David.Magis@ulg.ac.be}
 }

\seealso{
 \code{\link{nBartlett}},
 \code{\link{bentlerParameters}}
 }

\examples{
## ................................................
## SIMPLE EXAMPLE OF THE BENTLER AND YUAN PROCEDURE

# Bentler (1996, p. 309) Table 2 - Example 2 .............
n=649
bentler2<-c(5.785, 3.088, 1.505, 0.582, 0.424, 0.386, 0.360, 0.337, 0.303,
            0.281, 0.246, 0.238, 0.200, 0.160, 0.130)

results  <- nBentler(x=bentler2, N=n)
results

plotuScree(x=bentler2, model="components",
    main=paste(results$nFactors,
    " factors retained by the Bentler and Yuan's procedure (1996, p. 309)",
    sep=""))
# ........................................................

# Bentler (1998, p. 140) Table 3 - Example 1 .............
n        <- 145
example1 <- c(8.135, 2.096, 1.693, 1.502, 1.025, 0.943, 0.901, 0.816, 0.790,
              0.707, 0.639, 0.543,
              0.533, 0.509, 0.478, 0.390, 0.382, 0.340, 0.334, 0.316, 0.297,
              0.268, 0.190, 0.173)
              
results  <- nBentler(x=example1, N=n)
results

plotuScree(x=example1, model="components",
   main=paste(results$nFactors,
   " factors retained by the Bentler and Yuan's procedure (1998, p. 140)",
   sep=""))
# ........................................................
 }

\keyword{ multivariate }

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API