Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c75bac1
  • /
  • gpflow
  • /
  • conditionals
  • /
  • uncertain_conditionals.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:0e823703fe9cdb9e1d8aa516300a598bffd59d93
directory badge Iframe embedding
swh:1:dir:788a4cca9ce8e926b0fda0c822ab60b690f70ed2
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
uncertain_conditionals.py
# Copyright 2017-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import tensorflow as tf

from .. import covariances, mean_functions
from ..base import MeanAndVariance
from ..config import default_float, default_jitter
from ..expectations import expectation
from ..experimental.check_shapes import check_shapes
from ..inducing_variables import InducingPoints, InducingVariables
from ..kernels import Kernel
from ..probability_distributions import Gaussian


@check_shapes(
    "Xnew_mu: [batch..., N, Din]",
    "Xnew_var: [batch..., N, n, n]",
    "inducing_variable: [M, Din, broadcast t]",
    "q_mu: [M, Dout]",
    "q_sqrt: [t, M, M]",
    "return[0]: [batch..., N, Dout]",
    "return[1]: [batch..., N, t, t] if full_output_cov",
    "return[1]: [batch..., N, Dout] if not full_output_cov",
)
def uncertain_conditional(
    Xnew_mu: tf.Tensor,
    Xnew_var: tf.Tensor,
    inducing_variable: InducingVariables,
    kernel: Kernel,
    q_mu: tf.Tensor,
    q_sqrt: tf.Tensor,
    *,
    mean_function: Optional[mean_functions.MeanFunction] = None,
    full_output_cov: bool = False,
    full_cov: bool = False,
    white: bool = False,
) -> MeanAndVariance:
    """
    Calculates the conditional for uncertain inputs Xnew, p(Xnew) = N(Xnew_mu, Xnew_var).
    See ``conditional`` documentation for further reference.

    :param Xnew_mu: mean of the inputs
    :param Xnew_var: covariance matrix of the inputs
    :param inducing_variable: gpflow.InducingVariable object, only InducingPoints is supported
    :param kernel: gpflow kernel object.
    :param q_mu: mean inducing points
    :param q_sqrt: cholesky of the covariance matrix of the inducing points
    :param full_output_cov: boolean wheter to compute covariance between output dimension.
        Influences the shape of return value ``fvar``. Default is False
    :param white: boolean whether to use whitened representation. Default is False.
    :return fmean, fvar: mean and covariance of the conditional
    """

    if not isinstance(inducing_variable, InducingPoints):
        raise NotImplementedError

    if full_cov:
        raise NotImplementedError(
            "uncertain_conditional() currently does not support full_cov=True"
        )

    pXnew = Gaussian(Xnew_mu, Xnew_var)

    num_data = tf.shape(Xnew_mu)[0]  # number of new inputs (N)
    num_ind, num_func = tf.unstack(
        tf.shape(q_mu), num=2, axis=0
    )  # number of inducing points (M), output dimension (D)
    q_sqrt_r = tf.linalg.band_part(q_sqrt, -1, 0)  # [D, M, M]

    eKuf = tf.transpose(expectation(pXnew, (kernel, inducing_variable)))  # [M, N] (psi1)
    Kuu = covariances.Kuu(inducing_variable, kernel, jitter=default_jitter())  # [M, M]
    Luu = tf.linalg.cholesky(Kuu)  # [M, M]

    if not white:
        q_mu = tf.linalg.triangular_solve(Luu, q_mu, lower=True)
        Luu_tiled = tf.tile(
            Luu[None, :, :], [num_func, 1, 1]
        )  # remove line once issue 216 is fixed
        q_sqrt_r = tf.linalg.triangular_solve(Luu_tiled, q_sqrt_r, lower=True)

    Li_eKuf = tf.linalg.triangular_solve(Luu, eKuf, lower=True)  # [M, N]
    fmean = tf.linalg.matmul(Li_eKuf, q_mu, transpose_a=True)

    eKff = expectation(pXnew, kernel)  # N (psi0)
    eKuffu = expectation(
        pXnew, (kernel, inducing_variable), (kernel, inducing_variable)
    )  # [N, M, M] (psi2)
    Luu_tiled = tf.tile(
        Luu[None, :, :], [num_data, 1, 1]
    )  # remove this line, once issue 216 is fixed
    Li_eKuffu = tf.linalg.triangular_solve(Luu_tiled, eKuffu, lower=True)
    Li_eKuffu_Lit = tf.linalg.triangular_solve(
        Luu_tiled, tf.linalg.adjoint(Li_eKuffu), lower=True
    )  # [N, M, M]
    cov = tf.linalg.matmul(q_sqrt_r, q_sqrt_r, transpose_b=True)  # [D, M, M]

    if mean_function is None or isinstance(mean_function, mean_functions.Zero):
        e_related_to_mean = tf.zeros((num_data, num_func, num_func), dtype=default_float())
    else:
        # Update mean: \mu(x) + m(x)
        fmean = fmean + expectation(pXnew, mean_function)

        # Calculate: m(x) m(x)^T + m(x) \mu(x)^T + \mu(x) m(x)^T,
        # where m(x) is the mean_function and \mu(x) is fmean
        e_mean_mean = expectation(pXnew, mean_function, mean_function)  # [N, D, D]
        Lit_q_mu = tf.linalg.triangular_solve(Luu, q_mu, adjoint=True)
        e_mean_Kuf = expectation(pXnew, mean_function, (kernel, inducing_variable))  # [N, D, M]
        # einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor:
        e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind])
        e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu)  # [N, D, D]
        e_related_to_mean = e_fmean_mean + tf.linalg.adjoint(e_fmean_mean) + e_mean_mean

    if full_output_cov:
        fvar = (
            tf.linalg.diag(tf.tile((eKff - tf.linalg.trace(Li_eKuffu_Lit))[:, None], [1, num_func]))
            + tf.linalg.diag(tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov))
            +
            # tf.linalg.diag(tf.linalg.trace(tf.linalg.matmul(Li_eKuffu_Lit, cov))) +
            tf.einsum("ig,nij,jh->ngh", q_mu, Li_eKuffu_Lit, q_mu)
            -
            # tf.linalg.matmul(q_mu, tf.linalg.matmul(Li_eKuffu_Lit, q_mu), transpose_a=True) -
            fmean[:, :, None] * fmean[:, None, :]
            + e_related_to_mean
        )
    else:
        fvar = (
            (eKff - tf.linalg.trace(Li_eKuffu_Lit))[:, None]
            + tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov)
            + tf.einsum("ig,nij,jg->ng", q_mu, Li_eKuffu_Lit, q_mu)
            - fmean ** 2
            + tf.linalg.diag_part(e_related_to_mean)
        )

    return fmean, fvar

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API