https://github.com/cran/rstpm2
Tip revision: a7579fe5c45e3037ff1d25ecf1ed763a91d6ba89 authored by Mark Clements on 05 December 2023, 15:30:02 UTC
version 1.6.3
version 1.6.3
Tip revision: a7579fe
vuniroot.cpp
#include <cfloat>
#include <Rcpp.h>
namespace rstpm2 {
// List vunirootRcpp(Function f, NumericVector lower, NumericVector upper, int numiter, double tol) {
RcppExport SEXP vunirootRcpp(SEXP __f, SEXP __lower, SEXP __upper, SEXP __fa, SEXP __fb, SEXP __numiter, SEXP __tol) {
using namespace R;
using namespace Rcpp;
Function f = as<Function>(__f);
NumericVector lower = clone(as<NumericVector>(__lower));
NumericVector upper = clone(as<NumericVector>(__upper));
NumericVector fa = clone(as<NumericVector>(__fa));
NumericVector fb = clone(as<NumericVector>(__fb));
int numiter = as<int>(__numiter);
double tol = as<double>(__tol);
int size = lower.size();
NumericVector a(clone(lower)), b(clone(upper)), c(clone(a)), Tol(size,0.0);
NumericVector fc(clone(fa));
LogicalVector converged(size,false);
IntegerVector ns(size,-1);
int i;
/* First test if we have found a root at an endpoint */
for(i=0; i<size; i++) {
if (fa[i]==0.0) {
converged[i]=true;
b[i]=a[i];
}
if (fb[i]==0.0) {
converged[i]=true;
}
}
for (int n = 1; n<=numiter; n++) {
R_CheckUserInterrupt(); /* be polite -- did the user hit ctrl-C? */
for(i=0; i<size; i++) {
if (!converged[i]) {
double prev_step = b[i]-a[i]; /* Distance from the last but one
to the last approximation */
double tol_act; /* Actual tolerance */
double p; /* Interpolation step is calcu- */
double q; /* lated in the form p/q; divi-
* sion operations is delayed
* until the last moment */
double new_step; /* Step at this iteration */
if( fabs(fc[i]) < fabs(fb[i]) )
{ /* Swap data for b to be the */
a[i] = b[i]; b[i] = c[i]; c[i] = a[i]; /* best approximation */
fa[i]=fb[i]; fb[i]=fc[i]; fc[i]=fa[i];
}
tol_act = 2*DBL_EPSILON*fabs(b[i]) + tol/2;
new_step = (c[i]-b[i])/2.0;
if( fabs(new_step) <= tol_act || fb[i] == (double)0 )
{
// *Maxit -= maxit;
Tol[i] = fabs(c[i]-b[i]);
converged[i] = true; /* Acceptable approx. is found */
ns[i] = n;
} else {
/* Decide if the interpolation can be tried */
if( fabs(prev_step) >= tol_act /* If prev_step was large enough*/
&& fabs(fa[i]) > fabs(fb[i]) ) { /* and was in true direction,
* Interpolation may be tried */
double t1,cb,t2;
cb = c[i]-b[i];
if( a[i]==c[i] ) { /* If we have only two distinct */
/* points linear interpolation */
t1 = fb[i]/fa[i]; /* can only be applied */
p = cb*t1;
q = 1.0 - t1;
}
else { /* Quadric inverse interpolation*/
q = fa[i]/fc[i]; t1 = fb[i]/fc[i]; t2 = fb[i]/fa[i];
p = t2 * ( cb*q*(q-t1) - (b[i]-a[i])*(t1-1.0) );
q = (q-1.0) * (t1-1.0) * (t2-1.0);
}
if( p>(double)0 ) /* p was calculated with the */
q = -q; /* opposite sign; make p positive */
else /* and assign possible minus to */
p = -p; /* q */
if( p < (0.75*cb*q-fabs(tol_act*q)/2) /* If b+p/q falls in [b,c]*/
&& p < fabs(prev_step*q/2) ) /* and isnt too large */
new_step = p/q; /* it is accepted
* If p/q is too large then the
* bisection procedure can
* reduce [b,c] range to more
* extent */
}
if( fabs(new_step) < tol_act) { /* Adjust the step to be not less*/
if( new_step > (double)0 ) /* than tolerance */
new_step = tol_act;
else
new_step = -tol_act;
}
a[i] = b[i]; fa[i] = fb[i]; /* Save the previous approx. */
b[i] += new_step; // fb = (*f)(b, info); /* Do step to a new approxim. */
}
}
}
if (is_true(all(converged))) break;
fb = f(b);
for(i=0; i<size; i++) {
if( (fb[i] > 0 && fc[i] > 0) || (fb[i] < 0 && fc[i] < 0) ) {
/* Adjust c for it to have a sign opposite to that of b */
c[i] = a[i]; fc[i] = fa[i];
}
}
}
if (is_false(all(converged)))
for (i=0; i<size; i++)
if (!converged[i]) {
Tol[i]=fabs(c[i]-b[i]);
ns[i] = -1;
}
return wrap(List::create(_("root") = b, _("iter") = ns, _("tol")=Tol));
}
RcppExport SEXP voptimizeRcpp(SEXP __f, SEXP __ax, SEXP __bx, SEXP __tol) {
using Rcpp::NumericVector;
using Rcpp::clone;
using Rcpp::as;
Rcpp::Function f = as<Rcpp::Function>(__f);
NumericVector ax = clone(as<NumericVector>(__ax));
NumericVector bx = clone(as<NumericVector>(__bx));
const double tol = as<double>(__tol);
const int size = ax.size();
/* c is the squared inverse of the golden ratio */
const double c = (3. - sqrt(5.)) * .5;
/* Local variables */
NumericVector a = clone(ax), b=clone(bx);
NumericVector w, x, fx, fu, fv, fw;
double p, q, r;
double eps, tol3;
NumericVector d(size, 0.0), e(size, 0.0), u(size, 0.0), xm(size,0.0),
t2(size,0.0), tol1(size,0.0), v(size,0.0);
/* eps is approximately the square root of the relative machine precision. */
eps = DBL_EPSILON;
tol1 = eps + 1.;/* the smallest 1.000... > 1 */
eps = sqrt(eps);
for (int i=0; i<size; ++i)
v[i] = a[i] + c * (b[i] - a[i]);
w = clone(v);
x = clone(v);
fx = f(x);
fv = clone(fx);
fw = clone(fx);
tol3 = tol / 3.;
/* main loop starts here ----------------------------------- */
for(;;) {
R_CheckUserInterrupt(); /* be polite -- did the user hit ctrl-C? */
for (int i=0; i<size; ++i) {
xm[i] = (a[i] + b[i]) * .5;
tol1[i] = eps * fabs(x[i]) + tol3;
t2[i] = tol1[i] * 2.;
}
/* check stopping criterion -- do any fail? */
bool any_failures = false;
for (int i=0; i<size; ++i) {
if (fabs(x[i] - xm[i]) > t2[i] - (b[i] - a[i]) * .5) {
any_failures = true;
break;
}
}
if (!any_failures) break;
for (int i=0; i<size; ++i) {
p = 0.;
q = 0.;
r = 0.;
if (fabs(e[i]) > tol1[i]) { /* fit parabola */
r = (x[i] - w[i]) * (fx[i] - fv[i]);
q = (x[i] - v[i]) * (fx[i] - fw[i]);
p = (x[i] - v[i]) * q - (x[i] - w[i]) * r;
q = (q - r) * 2.;
if (q > 0.) p = -p; else q = -q;
r = e[i];
e[i] = d[i];
}
if (fabs(p) >= fabs(q * .5 * r) ||
p <= q * (a[i] - x[i]) || p >= q * (b[i] - x[i])) { /* a golden-section step */
if (x[i] < xm[i]) e[i] = b[i] - x[i]; else e[i] = a[i] - x[i];
d[i] = c * e[i];
}
else { /* a parabolic-interpolation step */
d[i] = p / q;
u[i] = x[i] + d[i];
/* f must not be evaluated too close to ax or bx */
if (u[i] - a[i] < t2[i] || b[i] - u[i] < t2[i]) {
d[i] = tol1[i];
if (x[i] >= xm[i]) d[i] = -d[i];
}
}
/* f must not be evaluated too close to x */
if (fabs(d[i]) >= tol1[i])
u[i] = x[i] + d[i];
else if (d[i] > 0.)
u[i] = x[i] + tol1[i];
else
u[i] = x[i] - tol1[i];
}
fu = f(u);
/* update a, b, v, w, and x */
for (int i=0; i<size; ++i) {
if (fu[i] <= fx[i]) {
if (u[i] < x[i]) b[i] = x[i]; else a[i] = x[i];
v[i] = w[i]; w[i] = x[i]; x[i] = u[i];
fv[i] = fw[i]; fw[i] = fx[i]; fx[i] = fu[i];
} else {
if (u[i] < x[i]) a[i] = u[i]; else b[i] = u[i];
if (fu[i] <= fw[i] || w[i] == x[i]) {
v[i] = w[i]; fv[i] = fw[i];
w[i] = u[i]; fw[i] = fu[i];
} else if (fu[i] <= fv[i] || v[i] == x[i] || v[i] == w[i]) {
v[i] = u[i]; fv[i] = fu[i];
}
}
}
}
/* end of main loop */
return Rcpp::wrap(x);
}
} // namespace