mean_functions.py
# Copyright 2016 James Hensman, alexggmatthews, PabloLeon, Valentine Svensson
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
import numpy as np
from .param import Param, ParamList, Parameterized
from ._settings import settings
float_type = settings.dtypes.float_type
np_float_type = np.float32 if float_type is tf.float32 else np.float64
class MeanFunction(Parameterized):
"""
The base mean function class.
To implement a mean function, write the __call__ method. This takes a
tensor X and returns a tensor m(X). In accordance with the GPflow
standard, each row of X represents one datum, and each row of Y is computed
independently for each row of X.
MeanFunction classes can have parameters, see the Linear class for an
example.
"""
def __call__(self, X):
raise NotImplementedError("Implement the __call__\
method for this mean function")
def __add__(self, other):
return Additive(self, other)
def __mul__(self, other):
return Product(self, other)
class Zero(MeanFunction):
def __call__(self, X):
return tf.zeros(tf.stack([tf.shape(X)[0], 1]), dtype=float_type)
class Linear(MeanFunction):
"""
y_i = A x_i + b
"""
def __init__(self, A=None, b=None):
"""
A is a matrix which maps each element of X to Y, b is an additive
constant.
If X has N rows and D columns, and Y is intended to have Q columns,
then A must be D x Q, b must be a vector of length Q.
"""
A = np.ones((1, 1)) if A is None else A
b = np.zeros(1) if b is None else b
MeanFunction.__init__(self)
self.A = Param(np.atleast_2d(A))
self.b = Param(b)
def __call__(self, X):
return tf.matmul(X, self.A) + self.b
class Constant(MeanFunction):
"""
y_i = c,,
"""
def __init__(self, c=None):
MeanFunction.__init__(self)
c = np.zeros(1) if c is None else c
self.c = Param(c)
def __call__(self, X):
shape = tf.stack([tf.shape(X)[0], 1])
return tf.tile(tf.reshape(self.c, (1, -1)), shape)
class SwitchedMeanFunction(MeanFunction):
"""
This class enables to use different (independent) mean_functions respective
to the data 'label'.
We assume the 'label' is stored in the extra column of X.
"""
def __init__(self, meanfunction_list):
MeanFunction.__init__(self)
for m in meanfunction_list:
assert isinstance(m, MeanFunction)
self.meanfunction_list = ParamList(meanfunction_list)
self.num_meanfunctions = len(self.meanfunction_list)
def __call__(self, X):
ind = tf.gather(tf.transpose(X), tf.shape(X)[1]-1) # ind = X[:,-1]
ind = tf.cast(ind, tf.int32)
X = tf.transpose(tf.gather(tf.transpose(X), tf.range(0, tf.shape(X)[1]-1))) # X = X[:,:-1]
# split up X into chunks corresponding to the relevant likelihoods
x_list = tf.dynamic_partition(X, ind, self.num_meanfunctions)
# apply the likelihood-function to each section of the data
results = [m(x) for (x, m) in zip(x_list, self.meanfunction_list)]
# stitch the results back together
partitions = tf.dynamic_partition(tf.range(0, tf.size(ind)), ind, self.num_meanfunctions)
return tf.dynamic_stitch(partitions, results)
class Additive(MeanFunction):
def __init__(self, first_part, second_part):
MeanFunction.__init__(self)
self.add_1 = first_part
self.add_2 = second_part
def __call__(self, X):
return tf.add(self.add_1(X), self.add_2(X))
class Product(MeanFunction):
def __init__(self, first_part, second_part):
MeanFunction.__init__(self)
self.prod_1 = first_part
self.prod_2 = second_part
def __call__(self, X):
return tf.multiply(self.prod_1(X), self.prod_2(X))