Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/VincentYu68/SymmetryCurriculumLocomotion
19 June 2024, 13:49:32 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • fa936fa
  • /
  • baselines
  • /
  • plot_curriculum.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:114b3490abc99ecc5c0aded418b817814f029378
origin badgedirectory badge Iframe embedding
swh:1:dir:807aa53e6b969289a57f1450acca35121f9a2220
origin badgerevision badge
swh:1:rev:b50478f8eca673730e3ce1a5441b1948b31a5187
origin badgesnapshot badge
swh:1:snp:5c020c91964c1d071f5051f08dcb7bf5f940ca20
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: b50478f8eca673730e3ce1a5441b1948b31a5187 authored by Wenhao Yu on 31 January 2019, 22:41:28 UTC
update readme
Tip revision: b50478f
plot_curriculum.py
__author__ = 'yuwenhao'

import matplotlib
matplotlib.use('Agg')

import gym
import sys, os, time, errno

import joblib
import numpy as np

import matplotlib.pyplot as plt
import json
import re

np.random.seed(1)

if __name__ == '__main__':
    '''basepolicy = 'data/ppo_DartWalker3d-v193_energy03_vel5_3s_mirror4_velrew3_asinput_damping5_torque1x_anklesprint100_5_ab7_rotpen0_rew01xinit/'
    directory = 'data/ppo_curriculum_150eachit_vel5_3s_runningavg3_e03_DartWalker3d-v1_0_0.8_0.6_2500/'

    learning_curve = []
    with open(basepolicy + '/progress.json') as data_file:
        data = data_file.readlines()
        for line in data:
            pline = json.loads(line.strip())
            learning_curve.append(pline['EpRewMean'])
    learning_curve = learning_curve[0:250]
    with open(directory + '/progress.json') as data_file:
        data = data_file.readlines()
        for line in data:
            pline = json.loads(line.strip())
            learning_curve.append(pline['EpRewMean'])
    learning_curve = np.array(learning_curve)

    curriculum_list = []
    iter_list = {}
    for fname in os.listdir(directory):
        if 'policy_params_' in fname:
            split_name = re.split(r'[\[\];,\s]\s*', fname)
            cur_key = [float(split_name[1]), float(split_name[2])*2]
            if cur_key not in curriculum_list:
                curriculum_list.append(cur_key)

            split_it = re.split(r'[\[\]_.;,\s]\s*', split_name[-1])
            if str(cur_key) not in iter_list:
                iter_list[str(cur_key)] = int(split_it[1])
            else:
                iter_list[str(cur_key)] = max(iter_list[str(cur_key)], int(split_it[1]))
    curriculum_list.sort(reverse=True)

    distance_metric = []
    pretrain_iter = 250
    accum_iter = pretrain_iter
    iteration_list = []

    for curr in curriculum_list:
        distance_metric.append(np.linalg.norm(curr))
        accum_iter += iter_list[str(curr)] + np.random.randint(0, 10)
        iteration_list.append(accum_iter)

    iteration_list.insert(0, 0)
    distance_metric.insert(0, distance_metric[0])
    distance_metric = np.array(distance_metric)# / distance_metric[0]'''



    ############################### NEW APPROACH #####################
    # walking learning
    #env_cent_directory = 'data/ppo_DartWalker3d-v1101_energy04_vel1_1s_mirror4_velrew3_ab4_anklesprint100_5_rotpen0_rew05xinit_stagedcurriculum4s75s34ratio/'

    # running learning
    env_cent_directory = sys.argv[1]#'data/ppo_DartWalker3d-v1106_energy03_vel5_3s_mirror4_velrew3_damping5_anklesprint100_ab7_rotpen0_rew01xinit_stagedcurriculum4s75s12ratio_07rewthres/'

    save_directory = env_cent_directory + '/stats'

    try:
        os.makedirs(save_directory)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

    envcent_learning_curve = []
    with open(env_cent_directory + '/progress.json') as data_file:
        data = data_file.readlines()
        for line in data:
            pline = json.loads(line.strip())
            envcent_learning_curve.append(pline['EpRewMean'])

    envcentcurriculum_list = []
    envcenteriter_list = {}
    for fname in os.listdir(env_cent_directory):
        if '0.0' in fname:
            split_name = re.split(r'[\[\];,\s]\s*', fname)
            cur_key = [float(split_name[4]), float(split_name[4])]
            if cur_key not in envcentcurriculum_list:
                envcentcurriculum_list.append(cur_key)

                envcenteriter_list[str(cur_key)] = 10*(len(os.listdir(env_cent_directory + fname))-1)+1
        envcentcurriculum_list.sort(reverse=True)

    envcentdistance_metric = []
    accum_iter = 0
    envcenteriteration_list = []


    for curr in envcentcurriculum_list:
        envcentdistance_metric.append(np.linalg.norm(curr))
        accum_iter += envcenteriter_list[str(curr)] + np.random.randint(0, 10)
        envcenteriteration_list.append(accum_iter)
    envcenteriteration_list.insert(0, 0)
    envcentdistance_metric.insert(0, envcentdistance_metric[0])

    envcentdistance_metric = np.array(envcentdistance_metric)# / envcentdistance_metric[0]

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.plot(envcenteriteration_list, envcentdistance_metric, linewidth=2, label = 'Env-Cent Learning')
    #ax.plot(iteration_list, distance_metric, color='g', linewidth=2, label = 'Learner-Cent Learning')
    plt.legend()

    plt.title('Curriculum Progress', fontsize=14)

    plt.xlabel("Iteration", fontsize=14)
    plt.ylabel("Curriculum Progress", fontsize=14)

    for tick in ax.xaxis.get_major_ticks():
        tick.label.set_fontsize(13)
    for tick in ax.yaxis.get_major_ticks():
        tick.label.set_fontsize(13)

    plt.savefig(save_directory+'/curriculum_progress.png')

    ###################### plot learning curve #############################

    fig2 = plt.figure()
    ax = fig2.add_subplot(1, 1, 1)
    ax.plot(envcent_learning_curve, linewidth=2, label='Env-Cent Learning')
    #ax.plot(learning_curve[0:iteration_list[-1]], color='g', linewidth=2, label='Learner-Cent Learning')
    plt.legend()

    plt.title('Learning Curve', fontsize=14)

    plt.xlabel("Iteration", fontsize=14)
    plt.ylabel("Average Return", fontsize=14)

    for tick in ax.xaxis.get_major_ticks():
        tick.label.set_fontsize(13)
    for tick in ax.yaxis.get_major_ticks():
        tick.label.set_fontsize(13)

    plt.savefig(save_directory + '/learning_curve.png')
    ##################### plot curriculum path #############################

    fig3 = plt.figure()

    ax = fig3.add_subplot(1, 1, 1)
    envcentcurriculum_list = np.array(envcentcurriculum_list)
    #curriculum_list = np.array(curriculum_list)
    ax.plot(envcentcurriculum_list[:,0], envcentcurriculum_list[:,1], '*', linewidth=2, label='Env-Cent Learning')
    #ax.plot(curriculum_list[:,0], curriculum_list[:,1], '+g', linewidth=2, label='Learner-Cent Learning')
    plt.legend()

    plt.title('Curriculum Path', fontsize=14)

    plt.xlabel("kp", fontsize=14)
    plt.ylabel("kd", fontsize=14)

    for tick in ax.xaxis.get_major_ticks():
        tick.label.set_fontsize(13)
    for tick in ax.yaxis.get_major_ticks():
        tick.label.set_fontsize(13)

    plt.savefig(save_directory + '/curriculum_path.png')







Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top