Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:117b8ad6b0df39ccc74313c927a5f089e4af4dba
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
```@meta
CurrentModule = DataEnvelopmentAnalysis
DocTestSetup = quote
    using DataEnvelopmentAnalysis
end
```

# Profit Models

## Profit Efficiency Model with Directional Distance Function Technical Efficiency

 The profit function defines as $\Pi\left(\mathbf{w},\mathbf{p}\right)=\max \Big\{ \sum\limits_{i=1}^{s}{{p}_{i}}{{y}_{i}}-\sum\limits_{i=1}^{m}{{w}_{i}}{{x}_{i}} \,|  $
 $ {\mathbf{x}} \geqslant X\mathbf{\lambda},\;{\mathbf{y}} \leqslant Y{\mathbf{\lambda },\;{\mathbf{\mathbf{e\lambda=1}, \lambda }} \geqslant {\mathbf{0}}} \Big\}$. Calculating maximum profit along with the optimal output and input quantities $\mathbf{y^{*}}$and $\mathbf{x^{*}}$ requires solving: 

```math
\begin{align}
\label{eq:maxprofit}
  & \underset{\mathbf{x,y,\lambda} }{\mathop{\max }}\,\quad \quad \quad \;\ \Pi\left(\mathbf{w},\mathbf{p}\right)=\mathbf{py^{*}-wx^{*}}  \\ 
 & \text{subject}\ \text{to} \nonumber \\ 
 & \quad \quad \quad \quad \quad \ {{\mathbf{x}}}\ge X\mathbf{\lambda=x } \nonumber \\ 
 & \quad \quad \quad \quad \quad  \; {{\mathbf{y}}}  \le Y\mathbf{\lambda =y} \nonumber\\
& \quad \quad \quad \quad \quad \; \mathbf{e\lambda=1}
\nonumber \\ 
 & \quad \quad \quad \quad \quad \ \mathbf{\lambda }\ge \mathbf{0}. \nonumber  
\end{align}
```

*Profit efficiency* defines as the difference between maximum profit and observed profit. Following the duality results introduced by *Chambers, Chung and Färe (1998)* it is possible to decompose it into technical and allocative efficiencies under variable returns to scale. Profit efficiency can be then decomposed into the directional distance fucntion and the residual difference corresponding to the *allocative profit efficiency*. Allocative efficiency defines then as the difference between maximum profit and profit at the technically efficient projection on the frontier. The approach relies on the directional vector to normalize these components, thereby ensuring that their values can be compared across DMUs. 

In this example we compute the profit efficiency measure under variable returns to scale:
```jldoctest 1
julia> X = [1 1; 1 1; 0.75 1.5; 0.5 2; 0.5 2; 2 2; 2.75 3.5; 1.375 1.75];

julia> Y = [1 11; 5 3; 5 5; 2 9; 4 5; 4 2; 3 3; 4.5 3.5];

julia> P = [2 1; 2 1; 2 1; 2 1; 2 1; 2 1; 2 1; 2 1];

julia> W = [2 1; 2 1; 2 1; 2 1; 2 1; 2 1; 2 1; 2 1];

julia> GxGydollar = 1 ./ (sum(P, dims = 2) + sum(W, dims = 2));

julia> Gx = repeat(GxGydollar, 1, 2);

julia> Gy = repeat(GxGydollar, 1, 2);

julia> deaprofit(X, Y, W, P, Gx, Gy)
Profit DEA Model 
DMUs = 8; Inputs = 2; Outputs = 2
Returns to Scale = VRS
─────────────────────────────────────
   Profit     Technical    Allocative
─────────────────────────────────────
1     2.0   0.0           2.0        
2     2.0  -5.41234e-16   2.0        
3     0.0   0.0           0.0        
4     2.0   0.0           2.0        
5     2.0   0.0           2.0        
6     8.0   6.0           2.0        
7    12.0  12.0          -1.77636e-15
8     4.0   3.0           1.0        
─────────────────────────────────────
```

### deaprofit Function Documentation

```@docs
deaprofit
```

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top