onestep.m
function [xe,te,x,t,energies] = onestep(w, x0, varargin)
% ONESTEP forward integration of 2-segment, simple walker for one step.
% [xc,tc,x,t,energies] = onestep(w, x0, flag) integrates the ODE
% until foot contact occurs, then computes momentum transfer.
% Input is w (walksw2 object), x0 (state vector).
% Output is xc, the state following impact; tc, the
% time of contact; t, the time vector; x, the state
% vector over time of the simulation; energies contain the
% energies before and after push-off and heelstrike.
% The initial condition x0 = [qstance qswing ustance uswing]
% and similarly, xc, both being row vectors.
% Options:
% onestep(w, x0, 'anim', Nframes) returns the states
% evenly spaced in time, with a total of Nframes per step
% onestep(w, x0, 'AbsTol', 1e-9) specifies the absolute tolerance
% for the integration, similarly 'RelTol' relative tolerance
% onestep(w, x0, 'tf', 5.5) specifies the ending time of the
% simulation.
% walksw2 is a simplest walker 2-D object
% Arthur D. Kuo, see:
% Kuo, A. D. (2002) Energetics of actively powered locomotion using the
% simplest walking model, Journal of Biomechanical Engineering, 124: 113-120.
% Kuo, A. D. (2001) A simple model predicts the step length-speed
% relationship in human walking, Journal of Biomechanical Engineering,
% 123: 264-269.
anim = 0; AbsTol = 1e-7; RelTol = 1e-5; tf = 5.5;
if nargin < 2 || (exist('x0') && isempty(x0)) % x0 not given
% if xstar exists
x0 = get(w, 'xstar');
if isempty(x0)
error('onestep requires an initial guess x0')
end
end
opt_argin = varargin;
while length(opt_argin) >= 2,
opt = opt_argin{1};
val = opt_argin{2};
opt_argin = opt_argin(3:end);
switch opt
case 'anim'
anim = val;
case 'AbsTol'
AbsTol = val;
case 'RelTol'
RelTol = val;
case 'tf'
tf = val;
otherwise
error('onestep options: anim, AbsTol, RelTol, tf')
end
end
options = odeset('events',@heelstrikeevent,'AbsTol',AbsTol,'RelTol',RelTol);
% This integrates the ode
sol = ode45(@fwalk,[0 tf],x0(:),options,w,get(w,'parms'));
t = sol.x'; x = sol.y';
if anim % intended for animation
t = linspace(0, sol.xe(end), anim+1)'; % linearly interpolate desired number
t(end) = []; % of frames, plus one
x = deval(sol, t)';
end
te = sol.xe(end)';
xe = sol.ye(:,end)';
% Now I have to do the switch:
[xe,energies] = s2stransition(xe, w);%org
%sil**
% [xe1,energies] = s2stransition(xe, w);%P = 0 now fox later********************
% xnew1 = lagrangepushoffsimpwalk2Art(xe, 0)%get(w,'P');
% xnew2 = s2transitionSW2deneme(w, xe, 0);
% [xnew3,lambdas] = heelstrikepwJc(w, xe)
% xe1
% xnew1
% xnew2
% xnew3=xnew3'
%***
if nargout == 0
plotstep(w,x,t);
end