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1 About NS2DDV

1.1 License terms

The toolbox NS2DDV is released under the terms of GNU-GPL version 3 license terms.
These terms are recalled here:

NS2DDV is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

NS2DDV is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with NS2DDV.
If not, see http://www.gnu.org/licenses/.

1.2 The authors

1.2.1 Current development team

Alexandre Mouton (lead developer) is a research engineer in scientific computing
and works in Laboratoire Paul Painlevé (CNRS & Université de Lille - France).
He is in charge of the code maintenance, its development, validation and diffusion.

Caterina Calgaro (lead developer) is an assistant professor in applied mathematics
in Laboratoire Paul Painlevé (CNRS & Université de Lille - France) and a member of
project-team Inria-RAPSODI (Inria Lille Nord-Europe, France).
She is in charge of the development of new finite volume methods, finite element methods,
and applications to physics.

Emmanuel Creusé (lead developer) is a full professor in applied mathematics in
Laboratoire de Mathématiques et leurs Applications de Valenciennes (LAMAV) (Univer-
sité Polytechnique Hauts-de-France - France) and an associate member of project-team
Inria-RAPSODI (Inria Lille Nord-Europe, France).
He is in charge of the development of new finite element methods, finite element methods,
and applications to physics.

1.2.2 Past developers

• Thierry Goudon

• Roberta Titarelli
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• Guillaume Lepoutère

• Francesca Miscioscia

• Alessandro Mozzato

• Maxime Gobert

• Lydéric Debusschère

1.3 Fundings

Inria Lille Nord-Europe is the French National Institute for computer science and
applied mathematics based in several french towns. Research at Inria is organised in
project teams which bring together researchers with complementary skills to focus on
specific scientific projects.
The development of NS2DDV code is partially funded by the project team Inria-RAPSODI
located in Inria-Lille Nord-Europe (Villeneuve d’Ascq - France).

Laboratoire Paul Painlevé (CNRS & Université de Lille) is a french laboratory
for pure and applied mathematics located in Villeneuve d’Ascq (France). This laboratory
is a Mixed Research Unit of CNRS (Centre National de la Recherche Scientifique) and
Université de Lille, and is structured in 5 research teams with full-time researchers, re-
search professors and engineers.
The development of NS2DDV code is partially funded by the AN-EDP research team of
Paul Painlevé Laboratory.

Laboratoire de Mathématiques et leurs Applications de Valenciennes (Uni-
versité Polytechnique Hauts-de-France is a french laboratory for pure and applied
mathematics located in Valenciennes (France). This laboratory is a research unit of Uni-
versité Polytechnique Hauts-de-France, and is structured in 4 research tems with full-time
researchers, research professors and engineers.

1.4 History

The NS2DDV code has been initially developed by the team SIMPAF (SImulation et
Modèles pour les PArticules et les Fluides) of Inria Lille Nord-Europe in cooperation
with the Paul Painlevé mathematics laboratory by following the ideas from a paper of E.
Creusé, C. Calgaro and T. Goudon published in 2008. The initial purpose of NS2DDV
was to apply Finite Element-Finite Volume hybrid methods for 2D incompressible Navier-
Stokes equations with variable density.

With this first success, several physical tests and Matlab features have been added
to the computational kernel, transforming the initial academic code into a free Matlab
toolbox dedicated to viscous fluids under GNU-GPL License Terms, and the release of
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version 1.0 has been distributed in November 2011. In addition, the NS2DDV toolbox
has been the main subject of the french popular science movie Avis de Recherche.

Thereafter, an important work has been led for restructuring the NS2DDV toolbox in
order to embed new models, test cases, numerical methods, and parallelization features
as easily as possible. This work led to the version 2.0 of NS2DDV.
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2 Recent changes - release notes

2.1 NS2DDV 2.0

The version 2.0 of NS2DDV has been released in November 2018 and brings many new
features compared to version 1.0:

• Some tasks can be parallelized with Matlab Parallel Computing Toolbox such as
finite element matrices assembling.

• Outputs files can be generated under HDF5 file format if a recent version of Matlab
is used. Such format are more convenient for post-processing treatments.

• Some Python 3 routines have been added for post-processing such as movie encoding
or signal studies.

• The setup generator has been simplified in order to be run in no-display mode.

• Each numerical method that is implemented has been validated with convergence
analysis.

• NS2DDV can be run in batch mode by disabling all graphical features.

• The use of external mesh files has been simplified. It is now possible to import some
meshes that have been generated with Gmsh.

• The Navier-Stokes model with constant density (NS) has been added.

In addition, the structure of NS2DDV has been slightly modified to be easily scalable
by including new numerical methods, models, or test cases. Any user can do it under the
license terms.
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3 Getting started

3.1 Installation prequisities

As NS2DDV is a simulation code written in Matlab, a Matlab distribution is mandatory
to run it. Since it has been developed with Matlab R2007a and newer versions, using
these versions may be sufficient to run NS2DDV core code.

In addition of a Matlab distribution, some Matlab toolboxes can be used to improve
the NS2DDV performances:

• Matlab Parallel Computing Toolbox (optional): this toolbox allows to speed up the
execution of many for loops within the code. To check if you are provided with this
toolbox, type the following Matlab command:

>> ver distcomp

• Matlab Partial Differential Equations Toolbox (optional): this toolbox provides
some unstructured mesh generation solution for NS2DDV. To check if you are pro-
vided with this toolbox, type the following Matlab command:

>> ver pde

If Matlab R2011a or newer is used, NS2DDV can write the numerical results un-
der HDF5 format supplemented with Xdmf description files. Such files can be read by
visualization softwares like VisIt.

3.2 Installation of NS2DDV

To install NS2DDV, you just need to download the archive containing the code and unzip
it in the directory you want.

3.3 Main features

NS2DDV is a Matlab toolbox dedicated to the resolution of 2D Navier-Stokes equations
for simulating incompressible fluids. The code embeds the following features:

• Preparation of a test case by modifying a pre-built parameter file,

• Parallelization of the computations (up to the presence of the Matlab Parallel Com-
puting Toolbox),

• Simulations on 2D structured meshes, unstructured meshes and external mesh files,
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• Use of second order MUSCL finite volume techniques for solving the density equa-
tion,

• Use of parallelized P2−P1 or P1,b−P1 finite element methods for solving the velocity-
pressure equations,

• Several first order and second order time semi-discretizations,

• Convergence and/or stability analysis on manufactured analytical test cases,

• In-situ visualization or data reading visualization,

• Batch mode run (except the test case preparation step),

• Animated results encoding.

The code is structured in order to make it easily enriched by any user. In such case,
the user shall read carefully the License Terms and the NS2DDV Developer’s Guide for
understanding what (s)he can or must do in order to contribute.

3.4 Running an example

3.4.1 Generating a setup file

The first step consists in starting Matlab in interactive mode. Once it is done, the user
must go in the root path of NS2DDV and run the routine generate setup file as follows:

>> generate_setup_file(’my_setup_file.m’)

The unique string argument of this routine is the output setup file to be produced.
Running this command will start a short Questions & Answers session where the user
has to specify the outlines of the simulation to be run. Note that each answer must be
written as a string with simple quotes (example: ’blabla’).

1. Cluster profile: choose the pre-built Matlab cluster profile (see Section 9.1 for the
details).

2. Model: choose between ’NS’ or ’NSDV’ model (see Section 5 for the details). This
choice will give the access to a specific set of test cases.

3. Test case: choose a test case (see Section 5 for the details). This chose will give
the access to specific domain geometries and/or mesh designs.

4. Convergence analysis (optional): if the chosen test case involves an analytic
solution, the user may be asked if (s)he wants to perform a convergence analysis.

5. Domain geometry (optional): according to the chosen test case, the user may
have to choose a domain geometry (see the description of the test cases in Section
5).
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6. Finite volume method (optional): if the NSDV model has been chosen at step
2, the user is asked for a finite volume method family.

7. Parallelization solution: choose a parallelization solution (serial or parallelization
with Matlab Parallel Computing Toolbox).

3.4.2 Modifying the setup file

Once the execution of generate setup file is finished, a setup file is generated and can
be opened in a text editor for modification by the user. However, some rules should be
respected for avoiding a premature crash of the code:

• Since the whole list of parameters has been entirely defined according to the choices
that have been done during the execution of generate setup file, the user must
not erase any line in the setup file but can only modify the parameters values.

• The first part of the setup file should not be modified since it somehow defines the
structure of the second part of the file. The parameter values can be modified in
this second part. Do not hesitate to read the comments and this documentation for
ensuring the compatibility of all parameters.

• Every string-type variable within the setup file must be written with simple quotes
(example: ’blabla’). Using double quotes (example: "blabla") should be avoided
as much as possible.

The modifiable part of any setup file is organized in several paragraphes:

• Domain parameters: see paragraph 4.1 for the details.

• Physical parameters: some parameters related to the test case and physical con-
stants are gathered in this paragraph. See paragraph 5 for the details.

• External initialization parameters: if the user wants to initialize the simulation with
data that are already discretized, a set of specific parameters are dedicated to this
optional feature. See paragraphs 5.2.2 and 5.1.2 for more details.

• Mesh generation and renumbering parameters: see paragraph 4.2 for the details.

• Boundary conditions parameters for the velocity: see the test case descriptions in
Section 5 for the details.

• Finite element parameters: see the test case descriptions in Section 5 for the details
about the pressure constrain and Section 7.2 for general informations about the
available finite element methods.

• Finite volume parameters (only when NSDV model has been selected): see Section
7.3 for the details about the available finite volume methods.
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• Parallelization parameters: see Section 9 for the details.

• In-situ visualization parameters: see paragraph 8.1 and Tables 4-5 for the details.

• Output results parameters: see paragraph 8.2 and Tables 2-3 for the details.

• Backup and resuming parameters: see Section 9.2 for the details.

3.4.3 Running NS2DDV

After having finished the modification of the setup file, the user can run the associated
simulation with the following command:

>> start_ns2ddv(’my_setup_file.m’)

If the parameters within the setup file are carefully chosen, NS2DDV will perform the
following tasks:

• In any case, NS2DDV creates a log file and completes it at each time step. This
log file should be almost identical as the informations printed in the Matlab user
interface. It can be used for studying the time evolution of many parameters such
as the kinetic energy, the total mass... See Section 8.3 for additional information
about log file analysis.

• If the user asks for them, NS2DDV produces output files that store 2D results
(velocity, pressure, mass and their derivatives). These files are produced either
under .mat or .h5 format according to the Matlab version that is used. One can
use Matlab or Python-Matplotlib solutions for visualizing the contents of these files
and their time dynamics. See paragraphs 8.2 and 8.3 for the details.

• If the user asks for them, NS2DDV produces some backup files that can be used for
resuming the simulation. Additional information about it can be found in paragraph
9.2.

If the output and backup directories contain some files that can be in conflict with
the files that should be produced by the simulation, NS2DDV stops and warns the user
about this conflict. To solve this problem, the user has two solutions:

• Delete the old files that are characterized by PARAMETERS.OUTPUT.DIRECTORY NAME,
PARAMETERS.OUTPUT.FILE NAME and PARAMETERS.BACKUP.DIRECTORY NAME.

• Run the routine clean outputs as follows:

>> clean_outputs(’my_setup_file.m’)
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3.4.4 Visualization of results

As it has been mentioned in the paragraph above, NS2DDV produces several ”raw” files
whose contents can be plotted. Four solutions are proposed for plotting these data and
saving the graphical outputs. They can answer almost the same requests which are:

• Plot and save some 2D results at a fixed time step with isolines and/or pseudocolors,
by loading a single file,

• Plot and save the meshes that are used for spatial discretization of velocity, pressure
and mass,

• Plot and save the time evolution of a 2D diagnostic as a movie,

• Plot and save the time evolution of scalar diagnostics such as the kinetic energy, the
total mass, etc...

The list of 2D diagnostics that can be plotted are referenced in Tables 4-5 (pp. 96-97).

The first one is an embedded Matlab solution that is specifically dedicated to NS2DDV
and should reproduce the same graphs (as far as we tested them) as if they were plotted in
a in-situ way. It is based on a set of Matlab routines that are parts of NS2DDV sources.
To use them, the user must open Matlab in graphical mode, move to the NS2DDV root
path, then run the following routine:

>> load_paths ()

Once this routine has been used, it is possible to use the routine plot from file

for selecting some diagnostics in a single .mat/.h5 file, visualizing them and saving the
output figure(s) in PNG format. It is also possible to visualize the dynamics within a file
set with the routine movie from file. See paragraphes 8.3.1 and 8.4.1 for the details.

The last visualization solution is based on Python-Matplotlib and is a ”no-display”
solution, meaning that the visualization can be run without any display server and/or
screen contrary to the Matlab solution above. This solution is recommended if the visu-
alization of results has to be scripted and done in batch mode. The main drawback is
that this visualization does not embed any graphical user interface, so Python skills are
required.

As with classical Python programs, the Python-Matplotlib solution is based on a set
of Python modules. It is possible to plot 2D diagnostics such as the velocity components
or the pressure, but also to plot the time evolution of the quantities that are stored in
each log file such as the kinetic energy, the total mass etc...

For example, in order to plot the time evolution of the kinetic energy stored in the file
diags log, the user can write the following Python script:
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#!/usr/bin/env python

# -*- coding: utf -8 -*-

from plot_overtime_log import *

namelogfile = ’./ diags_log ’

[headers , data] = read_logfile(namelogfile)

time = extract_data(headers , data , ’TIME’)

ekin = extract_data(headers , data , ’KINETIC ENERGY ’)

ylim = ’default ’

plot_data ([ekin], [time], [’Kinetic energy ’], ’Kinetic energy ’, \

ylim , ’./ekin.png’)

Once this script is implemented, the user has to execute it. With Linux or MacOS
distribution, and assuming that the script file has been named myscript.py, it can be
done by opening a terminal and typing

$ python myscript.py

3.4.5 ”Ready to use” examples

Some setup files examples have been prepared for discovering the features of NS2DDV1.
These files are gathered in the subdirectory EXAMPLES in the root path of NS2DDV. For
running the first example of the list below, the user should start Matlab with the graphical
interface and move to the root path of NS2DDV, then type:

>> start_ns2ddv(’./ EXAMPLES/test_nona.m’)

For running a Matlab visualization script (ex: movie nona.m), the user should move
to the root path of NS2DDV, then type:

>> run(’./ EXAMPLES/movie_nona.m’)

For running a Python-Matplotlib visualization script (ex: movie nona.py, the user
should open a terminal, move to the root path of NS2DDV, then type

$ cd EXAMPLES

$ python movie_nona.py

All setup files and visualization scripts have been written and commented such that
the user should be able to edit them and modify some parameters.

The available ”ready-to-use” examples are the following:

1These setup files are not specifically adapted for producing highly accurate results.
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• test nona.m: this example is focused on the serial simulation of the NONA test case
(see paragraph 5.2.7) with a structured space mesh and the time domain [0, 1].
Several visualization scripts are proposed for this example:

– plot single nona.m and plot single scalar nona.py are respectively Mat-
lab and Python-Matplotlib solutions for generating 2D plots from a single
output file. Note that these outputs files (.mat or .h5 format) are stored in
the directory RESULTS/EXAMPLES/test nona.

– movie nona.m and movie nona.py are Matlab and Python-Matplotlib solu-
tions for plotting the time dynamics within the simulation. Note that the
script movie nona.m does not save the produced animation, contrary to the
script movie nona.py that saves the result in RESULTS/EXAMPLES/test nona.

• test pois.m: this example is focused on the serial simulation of a Poiseuille flow in
a rectangular space domain (see paragraph 5.2.5), with a structured space mesh and
the time domain [0, 0.01]. In this example, a Minimum Degree Algorithm renumber-
ing procedure is considered for improving the linear system resolution performances.
Some visualization scripts in Matlab and Python are proposed as for the NONA ex-
ample above:

– plot single pois.m and plot single scalar pois.py are respectively Mat-
lab and Python-Matplotlib solutions for generating 2D plots from a single
output file. Note that these outputs files (.mat or .h5 format) are stored in
the directory RESULTS/EXAMPLES/test pois.

– movie pois.m and movie pois.py are Matlab and Python-Matplotlib solu-
tions for plotting the time dynamics within the simulation.

• test rtin.m: this example is focused on the serial simulation of a Rayleigh-Taylor
instability (see paragraph 5.1.5), with a structured space mesh and the time domain
[0, 0.2].
Some visualization scripts in Matlab and Python are proposed as for the NONA and
POIS examples above.

– plot single rtin.m and plot single scalar rtin.py are respectively Mat-
lab and Python-Matplotlib solutions for generating 2D plots from a single
output file. Note that these outputs files (.mat or .h5 format) are stored in
the directory RESULTS/EXAMPLES/test rtin.

– movie rtin.m and movie rtin.py are Matlab and Python-Matplotlib solu-
tions for plotting the time dynamics within the simulation.

Two variant of this test are also available:

– test rtin pct.m: the same test as test rtin.m but with the use of Matlab
Parallel Computing Toolbox for speeding up the computations.
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– test rtin pdet.m: the same test as test rtin.m but with the use of Matlab
Partial Differential Equations Toolbox for generating unstructured meshes.

• step neumann.m and step natural.m: two tests dedicated to the simulation of
a Poiseuille input flow in a backward-facing step shaped domain (see Figure 1,
paragraphes 4.1.2 and 5.2.5). The main purpose of this couple of test cases is to
compare the impact of pseudo-traction (or Neumann) and absorbing (or natural)
boundary conditions on the outlet boundary.
Indeed, both setup files step neumann.m and step natural.m are almost identical
and differ on the value of the parameters listed in table 1.

Parameter name Value in step neumann.m

PARAMETERS.FE.BC RIGHT UX ’NEUMANN’

PARAMETERS.FE.BC RIGHT UY ’NEUMANN’

PARAMETERS.OUTPUT.DIRECTORY NAME ’./RESULTS/EXAMPLES/step neumann’

PARAMETERS.BACKUP.DIRECTORY NAME ’./BACKUP/EXAMPLES/step neumann’

Parameter name Value in step natural.m

PARAMETERS.FE.BC RIGHT UX ’NATURAL’

PARAMETERS.FE.BC RIGHT UY ’NATURAL’

PARAMETERS.OUTPUT.DIRECTORY NAME ’./RESULTS/EXAMPLES/step natural’

PARAMETERS.BACKUP.DIRECTORY NAME ’./BACKUP/EXAMPLES/step natural’

Table 1: Parameters for ”ready-to-use” setup files step neumann.m and step natural.m

This couple of test cases is also an example of external mesh file import.
In order to highlight this comparison, the following visualization scripts are provided
in the subdirectory EXAMPLES:

– plot single scalar step neumann.py: a Python-Matplotlib script for plot-
ting and saving a scalar 2D result (here, it is the x-component of velocity) by
reading a single .h5 file from the simulation that has been previously run by
using step neumann.m.

– plot single scalar step natural.py: a Python-Matplotlib script that does
the same job as plot single scalar step neumann.py but for the simulation
run by using the setup file step natural.m.

– plot single vector step neumann.py: a Python-Matplotlib script that does
the same job as plot single scalar step neumann.py but for plotting a vec-
tor field such as the 2D velocity or the pressure gradient.

– plot single vector step natural.py: a Python-Matplotlib script that does
the same job as plot single vector step neumann.py but for the simulation
run by using the setup file step natural.m.
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– plot two scalar step.py: a Python-Matplotlib script for comparing two sim-
ulations in the same terms. More precisely, the aim of this script is to plot
on the same graph the isovalues of a 2D scalar result (here, we chose the x-
component of the velocity) at the same time step in order to compare two
simulations that are in competition.
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4 Space domain geometries and meshes

From now, we consider the following notations:

• x stands for the space variable,

• Ω is a bounded connected 2D domain with boundary denoted with ∂Ω,

• ∂Ω can be decomposed into 3 distinct subparts ∂Ω0, ∂ΩD and ∂ΩN ,

• For any bounded subset A ⊂ R2, nA is the outward normal unit vector to ∂A, and
τA is the unit tangent vector to ∂A such that det(nA, τA) = 1.

4.1 Available space domain geometries

We describe in this section the available geometries in NS2DDV. According to the chosen
test case, some of them can be used and the user must choose one of them during the
execution of generate manual setup. The value of PARAMETERS.DOMAIN.GEOMETRY will
be accordingly fixed and the user will be authorized to modify some parameters for resizing
the space domain.

4.1.1 RECTANGLE

Considering xmin < xmax and ymin < ymax, we define the space domain Ω as the 2D rect-
angle [xmin, xmax]× [ymin, ymax].

PARAMETERS.DOMAIN.XMIN = xmin;

PARAMETERS.DOMAIN.XMAX = xmax;

PARAMETERS.DOMAIN.YMIN = ymin;

PARAMETERS.DOMAIN.YMAX = ymax;

4.1.2 STEP

We consider xmin < xstep < xmax and ymin < ystep < ymax. Ω is defined a channel with a
facing step.

PARAMETERS.DOMAIN.XMIN = xmin;

PARAMETERS.DOMAIN.XMAX = xmax;

PARAMETERS.DOMAIN.YMIN = ymin;

PARAMETERS.DOMAIN.YMAX = ymax;

PARAMETERS.DOMAIN.XSTEP = xstep;
PARAMETERS.DOMAIN.YSTEP = ystep;

At present time, there is a unique configuration that is available:
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• Backward-facing step: the step is located on the left part of the domain (see
Figure 1), i.e. Ω is defined as

Ω = ([xmin, xmax]× [ymin, ymax]) \ ([xmin, xstep[×[ymin, ystep[) .

This configuration can be chosen in the setup file with the following parameter:

PARAMETERS.DOMAIN.STEP_POSITION = ’LEFT’;

(xmin, ymax) (xmax, ymax)

(xmax, ymin)(xstep, ymin)

(xstep, ystep)

(xmin, ystep)

Figure 1: Channel with backward-facing step

4.1.3 DIHEDRON

We consider xmin, xmax, ymin, ymax, xA1 , yA1 , xA2 ∈ R such that

xmin < xA1 < xA2 < xmax , ymin < yA1 < ymax .

Ω is set as ([xmin, xmax]× [ymin, ymax]) \CD where CD is the convex hull of the points
(xmin, ymin), (xA2 , ymin), (xA1 , yA1) and (xmin, yA1) (see Figure 2).
This domain configuration can be modified with the following setup parameters:

PARAMETERS.DOMAIN.XMIN = xmin;

PARAMETERS.DOMAIN.XMAX = xmax;

PARAMETERS.DOMAIN.YMIN = ymin;

PARAMETERS.DOMAIN.YMAX = ymax;

PARAMETERS.DOMAIN.XAXIS_ANGLE1 = xA1;

PARAMETERS.DOMAIN.YAXIS_ANGLE1 = yA1;

PARAMETERS.DOMAIN.XAXIS_ANGLE2 = xA2;
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(xmin, ymax) (xmax, ymax)

(xmax, ymin)(xA2 , ymin)

(xA1 , yA1)

(xmin, yA1)

Figure 2: Dihedron-like domain

4.2 Mesh generation solutions

According to the chosen domain geometry (see paragraph 4.1), NS2DDV proposes up to
3 ways to generate a mesh that is constituted of triangular cells.

• PARAMETERS.MESH.GENERATION = ’NS2DDV’ (only for RECTANGLE and DIHEDRON ge-
ometries): a method for generating ”almost regular” meshes that is included in
NS2DDV source code. If such method is chosen in the setup file, the user shall
precise the value of some additional parameters to complete the characterization of
the mesh that will be generated. These parameters depend on the chosen domain
geometry kind and are discussed in the following lines:

– RECTANGLE geometry: the mesh is completely described by 3 parameters that
are

∗ PARAMETERS.MESH.NBSEG X: the number ne,x of edges in x-direction. It
defines the x-component of the nodes as

xi = xmin +
i

ne,x
(xmax − xmin) ,

with i = 0, . . . , ne,x.

∗ PARAMETERS.MESH.NBSEG Y: the number ne,y of edges in y-direction. It
defines the y-component of the nodes as

yj = ymin +
j

ne,y
(ymax − ymin) ,

with j = 0, . . . , ne,y.

∗ PARAMETERS.MESH.TRIANGLES ORIENTATION: the main pattern of the mesh.
This parameter must be set to ’DIAGONAL’ or ’CROSS’ (see Figure 3).

– DIHEDRON geometry: the mesh is described thanks to 6 additional parameters:
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Figure 3: Mesh pattern on a rectangular domain with
PARAMETERS.MESH.TRIANGLES ORIENTATION = ’DIAGONAL’ (left) and with
PARAMETERS.MESH.TRIANGLES ORIENTATION = ’CROSS’ (right)

∗ PARAMETERS.MESH.HEIGHT BL: the height of boundary layer hBL in the
lower part of the domain. The default value is set to 0.2 and should
remain stricly positive.

∗ PARAMETERS.MESH.NBNODES INBL Y: the number of nodes nn,y,BL in y-direction
in the boundary layer.

∗ PARAMETERS.MESH.PROG GEOM BL Y: the geometric reason α that describe
the y-component of the nodes in the boundary layer. More precisely, these
nodes have coordinates of the form (xi, yj,BL) with

yj,BL =



yA1 +
jα hBL

(nn,y,BL − 1)α
, if xi ∈ [xmin, xA1 ],

yA1 +
xi − xA1

xA2 − xA1

(ymin − yA1) +
jα hBL

(nn,y,BL − 1)α
, if xi ∈ [xA1 , xA2 ],

ymin +
jα hBL

(nn,y,BL − 1)α
, if xi ∈ [xA2 , xmax],

with j = 0, . . . , nn,y,BL − 1.

∗ PARAMETERS.MESH.NBSEG OUTBL Y: the number ne,y,OBL of edges in y-direction
outside of the boundary layer. This defines the node coordinates (xi, yj,OBL)
outside of the boundary layer as follows

yj,OBL =



yA1 + hBL +
j

ne,y,OBL
, if xi ∈ [xmin, xA1 ],

yA1 +
xi − xA1

xA2 − xA1

(ymin − yA1) + hBL +
j

ne,y,OBL
, if xi ∈ [xA1 , xA2 ],

ymin + hBL +
j

ne,y,OBL
, if xi ∈ [xA2 , xmax],

with j = 0, . . . , ne,y,OBL.
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∗ PARAMETERS.MESH.NBSEG PERUNIT X: the number ne,x,BU of edges by unit
in x-direction. This defines the x-coordinates of the nodes as

xi = xmin +
i

(xmax − xmin)ne,x,BU
,

with i = 0, . . . , (xmax − xmin)ne,x,BU .

∗ PARAMETERS.MESH.TRIANGLES ORIENTATION: the main pattern of the mesh.
This parameter must be set to ’DIAGONAL’ or ’CROSS’ (see Figure 3).

• PARAMETERS.MESH.GENERATION = ’PDET’: this mesh generation method uses Mat-
lab Partial Differential Equations Toolbox to provide an unstructured triangulation
of the space domain. The user must be sure that the Matlab distribution (s)he is
using embeds this toolbox and can verify it with the following Matlab command:

>> ver pde

If this toolbox can be used, the user just need to precise the characteristic edge
length h0 in the setup file as follows:

% Characteristic edge length in the mesh

PARAMETERS.MESH.H0 = h0;

• PARAMETERS.MESH.GENERATION = ’FROM FILE’: with this method, NS2DDV loads
the mesh nodes and triangles from an external file. Two mesh formats are allowed:

– A unique file in .msh format. Such file can be generated with the mesh gener-
ation software Gmsh.

– A couple of files with t1/ p1 format. Such files are already provided with
NS2DDV source file: see the contents of directory MESH/MESH FILES. The t1

file contains the characterization of the triangles and the p1 file contains the
node coordinates.

To include such mesh files, the user must modify the setup file as in the following
examples:

% Mesh source file(s) : .msh or _p1/_t1 format allowed

% {’xxxx.msh ’} cell array of size 1 for .msh format

% {’xxxx_p1 ’, ’xxxx_t1 ’} cell array of size 2 for _p1/_t1 format

PARAMETERS.MESH.SRC_FILES = {’./MESH/MESH_GMSH/step.msh’};

or
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% Mesh source file(s) : .msh or _p1/_t1 format allowed

% {’xxxx.msh ’} cell array of size 1 for .msh format

% {’xxxx.p1 ’, ’xxxx_t1 ’} cell array of size 2 for _p1/_t1 format

PARAMETERS.MESH.SRC_FILES = ...

{’./MESH/MESH_FILES/mesh_rect_rtin_p1 ’, ...

’./MESH/MESH_FILES/mesh_rect_rtin_t1 ’};

Independently of the chosen mesh generation method, NS2DDV embeds some node
renumbering features in order to speed up the linear system inversion. More precisely, it
is possible to use the Minimum Degree Algorithm or the Cuthill-McKee Algorithm2 for
reducing the bandwidth of the matrices that are involved in the finite element methods
(see paragraph 7.2). The user can activate such feature by modifying the following lines
in the setup file:

% Node renumbering method

% ’NONE ’ No renumbering

% ’AMD ’ Renumbering with Minimum Degree Algorithm Matlab built -in

% routines

% ’CMK ’ Renumbering with Cuthill -McKee Matlab built -in routines

PARAMETERS.MESH.RENUMBERING = ’NONE’;

Note that no renumbering procedure is chosen by default.

2Matlab R2006a or newer is required for using Cuthill-McKee Algorithm.

23



5 Models and test cases

In addition of the notations introduced in the previous section, we consider the following
ones:

• t stands for the time variable,

• ∂t is the time derivative,

• ∇, ∇· and ∆ stand for the gradient, divergence and laplacian differential operators
in x,

• [0, T ] is a time interval with fixed T > 0.

5.1 NSDV: Incompressible 2D Navier-Stokes equations with vari-
able density

The Incompressible 2D Navier-Stokes model with variable density, or NSDV model, that
is solved by NS2DDV is constituted of the following dimensionless equations:

∂tρ+∇ · (ρu) = 0 , (5.1a)

ρ [∂tu + u · ∇u] +∇p =
1

Re
∆u + f , (5.1b)

∇ · u = 0 . (5.1c)

In these equations, the unknowns are the density ρ : [0, T ] × Ω → R, the velocity
u : [0, T ] × Ω → R2 and the scalar pressure p : [0, T ] × Ω → R. The characteristic
Reynolds number Re > 0 and the source term f : [0, T ]× Ω→ R2 are given.

5.1.1 Boundary conditions

In the following lines, we consider the following partition of the boundary ∂Ω

∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅ . (5.2)

In all test cases, ∂ΩD is assumed to be non-empty. In some of them, ∂ΩN can be an
empty set.

Dirichlet boundary conditions are applied on ∂ΩD. Such conditions are used to model
an inlet velocity applied on a part of the boundary and usually write as

u = uD , on [0, T ]× ∂ΩD. (5.3)

Concerning the boundary conditions on the free boundary ∂ΩN , several solutions are
currently available in NS2DDV code for the model NSDV: assuming that ∂ΩN 6= ∅ and
considering Γ ⊂ ∂ΩN (we can have Γ = ∂ΩN or not), one can consider

24



• Pseudo-traction (NEUMANN) boundary conditions:

1

Re
(∇u) nΩ − pnΩ = g , on [0, T ]× Γ, (5.4)

where g : [0, T ] × Γ → R2 is given and such that g(t, ·) ∈
(
H1/2(Γ)

)2
for any

t ∈ [0, T ].

• Symmetry conditions (SYMMETRY):
u · nΩ = 0 ,(

1

Re
(∇u) nΩ

)
× nΩ = 0 ,

on [0, T ]× Γ. (5.5)

Remark 5.1. If the boundary conditions are Dirichlet and/or symmetry boundary condi-
tions (no pseudo-traction conditions), the inlet velocity uD must satisfy the compatibility
condition ∫

∂Ω

uD(t, ·) · nΩ dσ = 0 , ∀ t ∈ [0, T ] , (5.6)

and the system (5.1)-(5.3) must be supplemented with an additional constrain on the
pressure to ensure the existence and the uniqueness of its solution. 2 solutions can be
used in NS2DDV:

• Null average pressure:

∫
Ω

p(t,x) dx = 0 is imposed for any t ∈ [0, T ],

• Null pressure on a specific point: provided with x∗ ∈ Ω, p(t,x∗) = 0 is imposed for
any t ∈ [0, T ].

This choice can be done in a setup file as follows:

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_AVERAGE ’;

or

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_FIXED_POINT ’;

In addition, it is necessary to fix a value for the point x∗ = (x∗, y∗). This can be done
by modifying the following parameters:

PARAMETERS.FE.NFX_X = x∗;
PARAMETERS.FE.NFX_Y = y∗;

Remark 5.2. If ∂ΩN 6= ∅ and if pseudo-traction conditions (5.4) are considered, the sys-
tem (5.1)-(5.3)-(5.4) does not require any additional constrain on uD or p like in Remark
5.1 to be well-posed.
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5.1.2 Initial state

In addition to the boundary conditions, the model (5.1) is completed with an initial
density ρ0 : Ω → R+, an initial velocity u0 : Ω → R2 and an initial pressure p0 : Ω → R.
NS2DDV embeds two ways to choose the definition of the initial state (ρ0,u0, p0):

• The initial state is analytically defined according to the chosen test case: in such
case, the user can refer to the next paragraphs for the complete definition of
(ρ0,u0, p0).
At the beginning of the simulation, NS2DDV discretizes (ρ0,u0, p0) according to the
chosen finite element scheme.
To set this initialization choice, the user must modify the setup file as follows:

% Use a third -party file to initialize the simulation

% Allowed formats: ’’, ’xxx.h5’, ’xxx.mat ’

% If ’’ (default value) is selected , the simulation will be

% initialized with the test case parameters

% If a valid file is selected , some domain and physical parameters

% above will be ignored.

PARAMETERS.INIT_FILE = ’’;

• The initial state is already discretized and is obtained from an external .h5 / .mat

file: in such case, the analytical definition of (ρ0,u0, p0) associated to the chosen
test case is not taken into account, and is replaced by some data that are already
discretized that will be denoted here (ρ0

h,u
0
h, p

0
h).

At the beginning of the simulation, NS2DDV reads the external file that is provided
by the user (see below), extracts the fields corresponding the density, the velocity
and the pressure, and uses them as initial data.
To set this initialization choice, the user must modify the setup file as follows
(the external file.h5 is replaced by the file the user wants to use):

% Use a third -party file to initialize the simulation

% Allowed formats: ’’, ’xxx.h5’, ’xxx.mat ’

% If ’’ (default value) is selected , the simulation will be

% initialized with the test case parameters

% If a valid file is selected , some domain and physical parameters

% above will be ignored.

PARAMETERS.INIT_FILE = ’the_external_file.h5’;

We remind that such an external file is associated to a mesh file, some domain geom-
etry parameters, and a time value that will be denoted here t∗. By default, NS2DDV
will use these data for the initialization step, meaning that the initial time t0 within
the simulation will be set to t∗, and that the domain and mesh parameters within
the setup file such as PARAMETERS.DOMAIN.XMAX or PARAMETERS.MESH.NBSEG X will
be ignored. However, it is possible to take into account these setup parameters as
follows:
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– Replace the default mesh: in such case, a new mesh based on the parameters
within the setup file is generated and the discrete (ρ0

h,u
0
h, p

0
h) is interpolated on

this new mesh to get (ρ0
h̃
,u0

h̃
, p0

h̃
) (Warning: this work can be time consuming).

To activate this feature, the user must modify the following lines in the setup
file:

% Build a new mesh at initialization

% (ignored if PARAMETERS.INIT_FILE = ’’)

% Allowed values: ’YES ’ or ’NO’ (default)

PARAMETERS.REMESH = ’NO’;

– Modify the domain geometry: in the case where the domain is remeshed, it is
possible to to get rid of the domain geometry that is inherited from the ”old”
mesh, and to replace it by the domain geometry that is described in the setup
file. To activate this feature, the user must activate the remeshing option as
above and modify the following lines in the setup file:

% Use domain parameters from the third -party initialization

% file or PARAMETERS.DOMAIN.XXX

% (ignored if PARAMETERS.INIT_FILE = ’’ or if

% PARAMETERS.REMESH = ’NO ’)

% ’EXT_FILE ’ The domain geometry parameters are imposed by

% the contents of PARAMETERS.INIT_FILE

% ’CURRENT_FILE ’ Use the variables PARAMETERS.DOMAIN.XXX above

PARAMETERS.WHICH_GEOMETRY = ’EXT_FILE ’;

Remark 5.3. If this feature is activated, the domain geometry kind (RECTANGLE,
...) that is chosen in the setup file must be the same as in the external file used
for initializing NS2DDV.

– Force the initial time value: if a external initial data is used, it is possible to
impose the initial time value t0 to t∗ instead of 0 (default value). To do this,
the user must modify the following lines in the setup file:

% Reset time variable if a third -party file is used to

% initialize the simulation (ignored if

% PARAMETERS.INIT_FILE = ’’)

% Allowed values: ’YES ’ (default) or ’NO’

PARAMETERS.RESET_TIME = ’YES’;

5.1.3 EXAC: analytical test case with full Dirichlet boundary conditions

This test case is dedicated to the validation of any resolution of NSDV model with full-
Dirichlet boundary conditions on velocity. It is associated to an analytical solution and
ad hoc manufactured source terms and a default Reynolds number Re = 1 (see [4]).

This test case can be run on a rectangular space domain Ω = [xmin, xmax]× [ymin, ymax]
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(see paragraph 4.1.1) with default definition Ω = [0, 1]2. In the case EXAC, an analytical
solution is set as (uex, pex) defined as

ρex(t, x, y) = 2 + x cos(sin t) + y sin(sin t) ,

uex(t, x, y) =

(
−y cos t
x cos t

)
,

pex(t, x, y) = sin t sin

(
2π (x− x∗)
xmax − xmin

)
sin

(
2π (y − y∗)
ymax − ymin

)
,

(5.7)

with a fixed point x∗ = (x∗, y∗) ∈ Ω (default values x∗ = xmin+xmax

2
, y∗ = ymin+ymax

2
).

The Dirichlet boundary conditions are set as

uD = uex|∂Ω
, on [0, T ]× ∂Ω , (5.8)

and the source term f is manufactured to fit with the exact solution. Note that these
boundary conditions need Remark 5.1 to be satisfied with the point x∗ = (x∗, y∗) linked
to the exact solution above. Hence, the user should have a look at the following lines of
the setup file in order to manage the pressure constrain:

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_FIXED_POINT ’;

PARAMETERS.FE.NFX_X = x∗;
PARAMETERS.FE.NFX_Y = y∗;

5.1.4 EXACNEU: analytical test case with Dirichlet-pseudotraction bound-
ary conditions

• Allowed values for PARAMETERS.DOMAIN.GEOMETRY: ‘RECTANGLE’

• Exact solution:

ρex(t, x, y) = 2 + x cos(sin t) + y sin(sin t) ,

uex(t, x, y) =


sin

(
x− xmin

xmax − xmin

)
sin

(
y − ymin

ymax − ymin

+ t

)

cos

(
x− xmin

xmax − xmin

)
cos

(
y − ymin

ymax − ymin

+ t

)
 ,

pex(t, x, y) =
1

Re(xmax − xmin)
cos

(
x− xmin

xmax − xmin

)
sin

(
y − ymin

ymax − ymin

+ t

)
,

(5.9)

• Boundary conditions:

1

Re
nΩ · ∇u− pnΩ = 0 , on [0, T ]× ∂ΩN ,

u = uex , on [0, T ]× ∂ΩD,
(5.10)

with ∂ΩN = {xmin}×]ymin, ymax[ and ∂ΩD = ∂Ω\∂ΩN .
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• Source term f is manufactured to fit with the exact solution above.

5.1.5 RTIN: Rayleigh-Taylor instability

This test case is dedicated to the study of the Rayleigh-Taylor instability that appears
when two fluids with different densities are separated by a common interface. The pro-
posed configuration is quite academic and is inspired by [7, 4]: the space domain is rect-
angular and defined as Ω = [xmin, xmax]× [ymin, ymax] with default definition [−0.5, 0.5]×
[−2, 2], and both fluids are only submitted to the gravitational force, so the external
source term in (5.1) is defined as

f = ρg , g =

(
0
−g

)
, (5.11)

where g > 0 is the dimensionless gravity constant. This constant is set by default to 9.81
but it can be modified in the setup file with the following lines:

% Gravity amplitude (Default = 9.81)

PARAMETERS.PHYSICAL.GRAVITY = g;

The Reynolds number Re is set by default to 1000 but can be modified with the fol-
lowing line in the setup file:

% Reynolds number

PARAMETERS.PHYSICAL.RE = Re;

In order to model two fluids with different densities, we consider two characteristic
densities ρm and ρM such that ρM > ρm > 0 (default values: ρm = 1, ρM = 7) and we set
the initial state as follows:

u0(x, y) = 0 ,

p0(x, y) = 0 ,

ρ0(x, y) =
ρM + ρm

2
+
ρM − ρm

2
tanh

(
y − η cos( 2π x

xmax−xmin
)

0.01 (xmax − xmin)

)
,

(5.12)

for any (x, y) ∈ Ω, with η defined as

η =

{
0.1 , if At = ρM−ρm

ρM+ρm
> 0.5,

0.01 , else.
(5.13)

One can replace the default values of ρm and ρM in the setup file by modifying the fol-
lowing lines:
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% Characteristic density of the light fluid

PARAMETERS.PHYSICAL.RHOMIN = ρm;

% Characteristic density of the heavy fluid

PARAMETERS.PHYSICAL.RHOMAX = ρM ;

Finally, the boundary conditions are set by splitting ∂Ω in two parts ∂ΩD and ∂ΩN

such that

∂ΩD = [xmin, xmax]× {ymin, ymax} , ∂ΩN = {xmin, xmax}× ]ymin, ymax[ , (5.14)

and 
u = 0 , on [0, T ]× ∂ΩD,
u · nΩ = 0 , on [0, T ]× ∂ΩN ,(

1

Re
(∇u) nΩ

)
× nΩ = 0 , on [0, T ]× ∂ΩN .

(5.15)

Note that these boundary conditions need Remark 5.1 to be satisfied. Hence, the user
should have a look at the following lines of the setup file in order to manage the pressure
constrain:

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_FIXED_POINT ’;

PARAMETERS.FE.NFX_X = x∗;
PARAMETERS.FE.NFX_Y = y∗;

For the test case RTIN, the default position of the pressure point x∗ is (xmin+xmax

2
, ymin+3ymax

4
).

5.1.6 DROP: falling droplet

This test case is dedicated to the study of the fall of a ”heavy” droplet through a ”light”
into a ”heavy” liquid in a cavity. We mean by ”heavy” and ”light” fluids some specific
subregions of the space domain where the initial density is provided with values that
slightly different.

As for the RTIN test case (see paragraph 5.1.5), the proposed configuration is inspired
by [4]: the considered space domain Ω is rectangular and is set as Ω = [xmin, xmax] ×
[ymin, ymax] with default value Ω = [0, 1]× [0, 2] and the involved fluids are only submitted
to the gravitational force, so the external source term f is defined as

f = ρg , g =

(
0
−g

)
, (5.16)

where g > 0 is the dimensionless gravity constant. This constant is set by default to 1
but it can be modified in the setup file with the following lines:

% Gravity amplitude (Default = 1)

PARAMETERS.PHYSICAL.GRAVITY = g;

The Reynolds number Re is set by default to 3132 but can be modified with the fol-
lowing line in the setup file:
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% Reynolds number

PARAMETERS.PHYSICAL.RE = Re;

In order to model two fluids with different densities, we consider two characteristic
densities ρm and ρM such that ρM > ρm > 0 (default values: ρm = 1, ρM = 100) and we
set the initial state as follows:

u0(x, y) = 0 ,

p0(x, y) = 0 ,

ρ0(x, y) =

{
ρM , ∀ (x, y) ∈ Bd ∪ [xmin, xmax]× [ymin, yI ] ,
ρm , else,

(5.17)

for any (x, y) ∈ Ω, where Bd ⊂ Ω defines the initial position of the droplet and yI ∈
]ymin, ymax[ is the y-component of the interface between heavy and light fluids. Bd is
defined as the 2D closed disc Bd = {(x− xd)2 + (y − yd)2 ≤ r2

d} with (xd, yd) and rd > 0
such that Bd is strictly included in Ω.

One can replace the default values of ρm, ρM , (xd, yd), rd and yI in the setup file by
modifying the following lines:

% Characteristic density of the light fluid

PARAMETERS.PHYSICAL.RHOMIN = ρm;

% Characteristic density of the heavy fluid

PARAMETERS.PHYSICAL.RHOMAX = ρM ;

% Coordinates of the droplet center

PARAMETERS.PHYSICAL.DROP_CENTER_X = xd;
PARAMETERS.PHYSICAL.DROP_CENTER_Y = yd;
% Radius of the droplet

PARAMETERS.PHYSICAL.DROP_RADIUS = rd;
% y-component of the interface between light and heavy fluids

PARAMETERS.PHYSICAL.DROP_INTERFACE_Y = yI;

Finally, the boundary conditions are set by splitting ∂Ω in two parts ∂ΩD and ∂ΩN

such that

∂ΩD = [xmin, xmax]× {ymin, ymax} , ∂ΩN = {xmin, xmax}× ]ymin, ymax[ , (5.18)

and 
u = 0 , on [0, T ]× ∂ΩD,
u · nΩ = 0 , on [0, T ]× ∂ΩN ,(

1

Re
(∇u) nΩ

)
× nΩ = 0 , on [0, T ]× ∂ΩN .

(5.19)

Note that these boundary conditions need Remark 5.1 to be satisfied. Hence, the user
should have a look at the following lines of the setup file in order to manage the pressure
constrain:
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PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_FIXED_POINT ’;

PARAMETERS.FE.NFX_X = x∗;
PARAMETERS.FE.NFX_Y = y∗;

For the test case DROP, the default position of the pressure point x∗ is (xmin+xmax

2
, ymin+yI

2
).

5.1.7 CAEN: lid-driven cavity

This test case is dedicated to the simulation of the 2D lid-driven cavity problem. This
problem is rather studied in the framework of incompressible Navier-Stokes equation but
it can also be run in the framework of NSDV model. Indeed, in this last context, the
density ρ is initialized with a uniform value across the space domain and should remain
constant in time.

The NSDV model (5.1) does not admit an exact solution with such test case, but is
modelized in a very simple way:

• The space domain is rectangular and set by default as the unit square Ω = [0, 1]2,

• Full-Dirichlet boundary conditions are considered for the velocity with

uD(t, x, y) =

(
uD,x(x, y)

0

)
, uD,x(x, y) =

{
1 , if y = ymax,
0 , else,

(5.20)

• The initial state is set as (ρ0,u0, p0) = (0, 0, 0),

• There is no source terms: f = 0.

5.2 NS: Incompressible 2D Navier-Stokes equations

The Incompressible 2D Navier-Stokes model, or NS model, that is solved by NS2DDV is
constituted by the following dimensionless equations:∂tu + u · ∇u +∇p =

1

Re
∆u + f , (5.21a)

∇ · u = 0 . (5.21b)

In these equations, the unknowns are the velocity u : [0, T ]× Ω → R2 and the scalar
pressure p : [0, T ] × Ω → R, and the characteristic Reynolds number Re > 0 and the
source term f : [0, T ]× Ω→ R2 are given.

5.2.1 Boundary conditions

In the following lines, we consider the following partition of the boundary ∂Ω

∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅ . (5.22)
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In all test cases, ∂ΩD is assumed to be non-empty. In some of them, ∂ΩN can be an
empty set.

Dirichlet boundary conditions are applied on ∂ΩD. Such conditions are used to model
an inlet velocity applied on a part of the boundary and usually write as

u = uD , on [0, T ]× ∂ΩD. (5.23)

Concerning the boundary conditions on the free boundary ∂ΩN , several solutions are
currently available in NS2DDV code for the model NS: assuming that ∂ΩN 6= ∅ and
considering Γ ⊂ ∂ΩN (we can have Γ = ∂ΩN or not), one can consider

• Pseudo-traction (NEUMANN) boundary conditions:

1

Re
(∇u) nΩ − pnΩ = g , on [0, T ]× Γ, (5.24)

where g : [0, T ] × Γ → R2 is given and such that g(t, ·) ∈
(
H1/2(Γ)

)2
for any

t ∈ [0, T ].

• Absorbing (NATURAL) boundary conditions: considering β ≥ 0, α1, α2, α3 ∈ R and

Θ(a) = a− β a+, the boundary conditions are

1

Re
(∇u) nΩ − pnΩ −

1

2
Θ (u · nΩ + (1− 2α1) w · nΩ) (u−w)

−Θ ((1− α2) u · nΩ + (α2 − α3) w · nΩ) w =
1

Re
(∇w) nΩ − r nΩ + g ,

(5.25)

on [0, T ] × Γ. In the equation above, g : [0, T ] × Γ → R2 is given and such that

g(t, ·) ∈
(
H1/2(Γ)

)2
for any t, and (w, r) is the solution of

1

Re
∆w(t, ·)−∇r(t, ·) = 0 , in Ω, (5.26a)

∇ ·w(t, ·) = 0 , in Ω, (5.26b)

w(t, ·) = w(t, ·) , on ∂Ω, (5.26c)

and where w(t, ·) is an extension of uD(t, ·) to ∂Ω such that

w(t, ·) ∈
(
H1/2(∂Ω)

)2
,

∫
∂Ω

w(t, ·) · nΩ dσ = 0 , , (5.27)

for any t fixed in [0, T ]. Hence, if uD does not depend on the time variable, the aux-
iliary problem (5.26) is solved only once at the beginning of the simulation. More
details about these boundary conditions for the NS model are available in [1, 2].
If such boundary conditions are considered, it is necessary to fill the following pa-
rameters in the setup file:
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PARAMETERS.FE.ALPHA1 = α1;

PARAMETERS.FE.ALPHA2 = α2;

PARAMETERS.FE.ALPHA3 = α3;

PARAMETERS.FE.BETA = β;

• Stress-balance (STRESS BALANCE) boundary conditions:

1

Re
(∇u) nΩ − pnΩ −

|u|2

2
S0(u · nΩ) nΩ = g , on [0, T ]× Γ, (5.28)

where g : [0, T ] × Γ → R2 is given and such that g(t, ·) ∈
(
H1/2(Γ)

)2
for any

t ∈ [0, T ], and S0 is defined as

S0(u · nΩ) =
1

2

(
1− tanh

(
u · nΩ

U0 δ

))
, (5.29)

where U0 > 0 is the characteristic velocity scale (generally linked to the chosen test
case), δ > 0 is a fixed dimensionless parameter set such that δ � 1. This last
parameter can be set in the setup file as follows:

PARAMETERS.FE.BC_DELTA = δ;

More details about these boundary conditions for the NS model are available in [5].

Remark 5.4. If ∂ΩN = ∅, the inlet velocity uD must satisfy the compatibility condition∫
∂Ω

uD(t, ·) · nΩ dσ = 0 , ∀ t ∈ [0, T ] , (5.30)

and the system (5.21)-(5.23) must be supplemented with an additional constrain on the
pressure to ensure the existence and the uniqueness of its solution. 2 solutions can be
used in NS2DDV:

• Null average pressure:

∫
Ω

p(t,x) dx = 0 is imposed for any t ∈ [0, T ],

• Null pressure on a specific point: provided with x∗ ∈ Ω, p(t,x∗) = 0 is imposed for
any t ∈ [0, T ].

This choice can be done in a setup file as follows:

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_AVERAGE ’;

or

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_FIXED_POINT ’;
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In addition, it is necessary to fix a value for the point x∗ = (x∗, y∗). This can be done
by modifying the following parameters:

PARAMETERS.FE.NFX_X = x∗;
PARAMETERS.FE.NFX_Y = y∗;

Remark 5.5. If ∂ΩN 6= ∅ and if pseudo-traction conditions (5.24) are considered, the
system (5.21)-(5.23)-(5.24) does not require any additional constrain on uD or p like in
Remark 5.4 to be well-posed.

Remark 5.6. If ∂ΩN 6= ∅ and if absorbing conditions (5.25)-(5.26) are considered, the
system (5.21)-(5.23)-(5.25)-(5.26) does not require any additional constrain on uD or p
like in Remark 5.4 to be well-posed. However, the auxiliary Stokes problem (5.26) requires
one of the following constrains to be well-posed:

•
∫

Ω

r(t,x) dx = 0 is imposed for any t ∈ [0, T ],

• Provided with x∗ ∈ Ω, r(t,x∗) = 0 is imposed for any t ∈ [0, T ].

To choose one of these constrain and set the coordinates of x∗, the user shall proceed just
as in Remark 5.4.

5.2.2 Initial state

In addition of boundary conditions, the model (5.21) is completed with an initial velocity
u0 : Ω → R2 and an initial pressure p0 : Ω → R. NS2DDV embeds two ways to choose
the definition of the initial state (u0, p0):

• The initial state is analytically defined according to the chosen test case: in such
case, the user can refer to the next paragraphes for the complete definition of (u0, p0).
At the beginning of the simulation, NS2DDV discretizes (u0, p0) according to the
chosen finite element scheme.
To set this initialization choice, the user must modify the setup file as follows:

% Use a third -party file to initialize the simulation

% Allowed formats: ’’, ’xxx.h5’, ’xxx.mat ’

% If ’’ (default value) is selected , the simulation will be

% initialized with the test case parameters

% If a valid file is selected , some domain and physical parameters

% above will be ignored.

PARAMETERS.INIT_FILE = ’’;

• The initial state is already discretized and is obtained from an external .h5 / .mat

file: in such case, the analytical definition of (u0, p0) associated to the chosen test
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case is not taken into account, and is replaced by some data that are already dis-
cretized that will be denoted here (u0

h, p
0
h).

At the beginning of the simulation, NS2DDV reads the external file that is provided
by the user (see below), extracts the fields corresponding to the velocity and the
pressure, and uses them as initial data.
To set this initialization choice, the user must modify the setup file as follows
(the external file.h5 is replaced by the file the user wants to use):

% Use a third -party file to initialize the simulation

% Allowed formats: ’’, ’xxx.h5’, ’xxx.mat ’

% If ’’ (default value) is selected , the simulation will be

% initialized with the test case parameters

% If a valid file is selected , some domain and physical parameters

% above will be ignored.

PARAMETERS.INIT_FILE = ’the_external_file.h5’;

We remind that such external file is associated to a mesh file, some domain geometry
parameters, and a time value that will be denoted here t∗. By default, NS2DDV
will use these data for the initialization step, meaning that the initial time t0 within
the simulation will be set to t∗, and that the domain and mesh parameters within
the setup file such as PARAMETERS.DOMAIN.XMAX or PARAMETERS.MESH.NBSEG X will
be ignored. However, it is possible to take into account these setup parameters as
follows:

– Replace the default mesh: in such case, a new mesh based on the parameters
within the setup file is generated and the discrete (u0

h, p
0
h) is interpolated on

this new mesh to get (u0
h̃
, p0

h̃
) (Warning: this work can be time consuming). To

activate this feature, the user must modify the following lines in the setup file:

% Build a new mesh at initialization

% (ignored if PARAMETERS.INIT_FILE = ’’)

% Allowed values: ’YES ’ or ’NO’ (default)

PARAMETERS.REMESH = ’NO’;

– Modify the domain geometry: in the case where the domain is remeshed, it is
possible to to get rid of the domain geometry that is inherited from the ”old”
mesh, and to replace it by the domain geometry that is described in the setup
file. To activate this feature, the user must activate the remeshing option as
above and modify the following lines in the setup file:
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% Use domain parameters from the third -party initialization

% file or PARAMETERS.DOMAIN.XXX

% (ignored if PARAMETERS.INIT_FILE = ’’ or

% PARAMETERS.REMESH = ’NO ’)

% ’EXT_FILE ’ The domain geometry parameters are imposed by

% the contents of PARAMETERS.INIT_FILE

% ’CURRENT_FILE ’ Use the variables PARAMETERS.DOMAIN.XXX above

PARAMETERS.WHICH_GEOMETRY = ’EXT_FILE ’;

Remark 5.7. If this feature is activated, the domain geometry kind (RECTANGLE,
DIHEDRON, ...) that is chosen in the setup file must be the same as in the ex-
ternal file used for initializing NS2DDV.

– Force the initial time value: if a external initial data is used, it is possible to
impose the initial time value t0 to t∗ instead of 0 (default value). To do this,
the user must modify the following lines in the setup file:

% Reset time variable if a third -party file is used to

% initialize the simulation (ignored if

% PARAMETERS.INIT_FILE = ’’)

% Allowed values: ’YES ’ (default) or ’NO’

PARAMETERS.RESET_TIME = ’YES’;

5.2.3 EXAC: analytical test case with full Dirichlet boundary conditions

This test case is dedicated to the validation of any resolution of NS model with full-
Dirichlet boundary conditions. It is associated to an analytical solution and ad hoc man-
ufactured source terms and a default Reynolds number Re = 1.

This test case can be run on a rectangular space domain Ω = [xmin, xmax]× [ymin, ymax]
(see paragraph 4.1.1) with default definition Ω = [0, 1]2. In the case EXAC, an analytical
solution is set as (uex, pex) defined as

uex(t, x, y) =

(
−y cos t
x cos t

)
,

pex(t, x, y) = sin t sin

(
2π (x− x∗)
xmax − xmin

)
sin

(
2π (y − y∗)
ymax − ymin

)
,

(5.31)

with a fixed point x∗ = (x∗, y∗) ∈ Ω (default values x∗ = xmin+xmax

2
, y∗ = ymin+ymax

2
). The

boundary conditions are set as

uD = uex|∂Ω
, on [0, T ]× ∂Ω , (5.32)

and the source term f is manufactured to fit with the exact solution.
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5.2.4 EXACNEU: analytical test case with Dirichlet-pseudotraction bound-
ary conditions

This test case is dedicated to the validation of any resolution of NS model with mixed
Dirichlet-Neumann boundary conditions. It is associated to an analytical solution and ad
hoc manufactured source terms and a default Reynolds number Re = 1.

This test case can be run on a rectangular space domain Ω = [xmin, xmax]× [ymin, ymax]
(see paragraph 4.1.1) with default definition Ω = [0, 1]2. In the case EXACNEU, the analyt-
ical solution is set as (uex, pex) defined as

uex(t, x, y) =


sin

(
x− xmin

xmax − xmin

)
sin

(
y − ymin

ymax − ymin

+ t

)

cos

(
x− xmin

xmax − xmin

)
cos

(
y − ymin

ymax − ymin

+ t

)
 ,

pex(t, x, y) =
1

Re(xmax − xmin)
cos

(
x− xmin

xmax − xmin

)
sin

(
y − ymin

ymax − ymin

+ t

)
.

(5.33)

The boundary conditions are set as

1

Re
(∇u) nΩ − pnΩ = 0 , on [0, T ]× ∂ΩN ,

uD = uex|∂ΩD
, on [0, T ]× ∂ΩD,

(5.34)

with ∂ΩN = {xmin}×]ymin, ymax[ and ∂ΩD = ∂Ω\∂ΩN .
Concerning the source term f , it is analytically manufactured to fit with the exact

solution (uex, pex).

5.2.5 POIS: 2D Poiseuille flow

This test case is dedicated to the evolution of a 2D Poiseuille flow between two plates. It
can be run on a rectangular space domain Ω = [xmin, xmax] × [ymin, ymax] (see paragraph
4.1.1) or a backward-facing step space domain (see Fig. 1 and paragraph 4.1.2). In both
cases, we have the following common assumptions:

• The source term f is set to 0,

• The domain boundary is splitted in two main parts ∂ΩN and ∂ΩD with

∂ΩN = {xmax}×]ymin, ymax[ , ∂ΩD = ∂Ω\∂ΩN , (5.35)

and the Dirichlet boundary conditions writes as (5.23) where the inlet velocity uD :
[0, T ]× ∂ΩD → R2 is defined in the following lines,

• The characteristic inlet velocity U is set by default to 1.

According to the chosen domain geometry, various definitions of uD are proposed:
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• Rectangular space domain: The considered space domain is Ω = [xmin, xmax] ×
[ymin, ymax] with default value Ω = [0, 0.04]× [−0.005, 0.005] (see paragraph 4.1.1).

3 ways are proposed to define uD(t, x, y) =

(
uD,x(x, y)

0

)
– Constant inlet velocity:

uD,x(x, y) =

{
U , if x = xmin, y ∈ ]ymin, ymax[,
0 , else.

(5.36)

In such case, there is no exact solution and the initial state is defined by

u0 = 0 , p0 = 0 . (5.37)

This choice can be done in a setup file by setting

PARAMETERS.PHYSICAL.INLET_VELOCITY = U ;

PARAMETERS.PHYSICAL.INLET_VELOCITY_KIND = ’CONSTANT ’;

– Polynomial inlet velocity (default):

uD,x(x, y) =

{
−6U (y2−ymin−(ymax+ymin)(y−ymin))

(ymax−ymin)2 , if x = xmin, y ∈ ]ymin, ymax[,

0 , else.
(5.38)

In such case, there is an exact solution defined as

uex(t, x, y) =

(
−6U (y2−ymin−(ymax+ymin)(y−ymin))

(ymax−ymin)2

0

)
,

pex(t, x, y) = −
12U

Re (ymax − ymin)2
(x− xmin) ,

(5.39)

and the initial state is set as

u0(x) = uex(0,x) , p0(x) = pex(0,x) . (5.40)

This choice can be done in a setup file by setting

PARAMETERS.PHYSICAL.INLET_VELOCITY = U ;

PARAMETERS.PHYSICAL.INLET_VELOCITY_KIND = ’POLYNOMIAL ’;

– Piecewise polynomial inlet velocity (see also [10]): fixing y ∈ ]ymin, ymax[, the
inlet velocity is defined as

uD,x(x, y) =

{
−6U (y2−y−(ymax+y)(y−y))

(ymax−y)2 , if x = xmin, y ∈ ]y, ymax[,

0 , else.
(5.41)
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In such case, there is no exact solution and the initial state is defined by

u0 = 0 , p0 = 0 . (5.42)

This choice can be done in a setup file by setting

PARAMETERS.PHYSICAL.INLET_VELOCITY = U ;

PARAMETERS.PHYSICAL.INLET_VELOCITY_KIND = ’MIXED ’;

PARAMETERS.PHYSICAL.INLET_VELOCITY_Y = y;

By default, y is set to ymin+ymax

2
.

• Backward-facing step space domain: a step as it is represented in Fig. 1 is cho-
sen (see paragraph 4.1.2), with default domain parameters xmin = 0, xmax = 27,
ymin = 0, ymax = 3, xstep = 12, ystep = 1.

2 ways are proposed to define uD(t, x, y) =

(
uD,x(x, y)

0

)
– Constant inlet velocity:

uD,x(x, y) =

{
U , if x = xmin, y ∈ ]ystep, ymax[,
0 , else.

(5.43)

In such case, there is no exact solution and the initial state is defined by

u0 = 0 , p0 = 0 . (5.44)

– Polynomial inlet velocity:

uD,x(x, y) =

{
−6U (y2−ystep−(ymax+ystep)(y−ystep))

(ymax−ystep)2 , if x = xmin, y ∈ ]ystep, ymax[,

0 , else.
(5.45)

In such case, there is no exact solution and the initial state is defined by

u0 = 0 , p0 = 0 . (5.46)

In the POIS test case, 3 kinds of boundary conditions can be applied on ∂ΩN . It can
be done by modifying the following parameters in the setup file:

PARAMETERS.FE.BC_RIGHT_UX = BC;

PARAMETERS.FE.BC_RIGHT_UY = BC;

where BC stands for one of the following boundary conditions for u:

• Homogeneous pseudo-traction conditions (BC = ’NEUMANN’) (default):

1

Re
(∇u) nΩ − pnΩ = 0 , on [0, T ]× ∂ΩN , (5.47)

40



• Homogeneous absorbing conditions (BC = ’NATURAL’):

1

Re
(∇u) nΩ − pnΩ −

1

2
Θ (u · nΩ + (1− 2α1) w · nΩ) (u−w)

−Θ ((1− α2) u · nΩ + (α2 − α3) w · nΩ) w =
1

Re
(∇w) nΩ − r nΩ ,

(5.48)

where (w, r) does not depend on t and is the solution of
1

Re
∆w −∇r = 0 , in Ω, (5.49a)

∇ ·w = 0 , in Ω, (5.49b)

w = w , on ∂Ω, (5.49c)

and w is defined as

w|∂ΩD
= uD , w|∂ΩN

=

(
wN,x

0

)
, (5.50)

with

wN,x(x, y) = −6W (y2 − ymin − (ymax + ymin)(y − ymin))

(ymax − ymin)2
, (5.51)

for any (x, y) ∈ ∂ΩN , and with W defined as

W =



U , if Ω is rectangular and uD is polynomial,

U , if Ω is rectangular and uD is constant,

U (ymax−y)
ymax−ymin

, if Ω is rectangular and uD is piecewise polynomial,

U (ymax−ystep)

ymax−ymin
, if Ω is backward-facing step-shaped.

(5.52)

Finally, the function Θ is defined by Θ(a) = a − βa+ with default β = 1 and the
parameters α1, α2, α3 are set by default to 0.5, 1 and 1 respectively.

• Homogeneous stress-balance boundary conditions (BC = ’STRESS BALANCE’):

1

Re
(∇u) nΩ − pnΩ −

|u|2

2
S0(u · nΩ) nΩ = 0 , on [0, T ]× ∂ΩN , (5.53)

with

S0(u · nΩ) =
1

2

(
1− tanh

(
u · nΩ

U δ

))
, (5.54)

where δ is set to 0.05 by default.
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5.2.6 CAEN: lid-driven cavity

This test case is dedicated to the simulation of the 2D lid-driven cavity problem. This
problem does not admit an exact solution but is modelized in a very simple way:

• The space domain is rectangular and set by default as the unit square Ω = [0, 1]2,

• Full-Dirichlet boundary conditions are considered for the velocity, i.e. ∂Ω = ∂ΩD,
with

uD(t, x, y) =

(
uD,x(x, y)

0

)
, uD,x(x, y) =

{
1 , if y = ymax,
0 , else,

(5.55)

• The initial state is set as (u0, p0) = (0, 0),

• There is no source terms: f = 0.

5.2.7 NONA: non-analytical test case

This test case is dedicated to the simulation of turbulences arising near an airplane wing.
At present time, 3 different domain geometries can be used to run this test case (see
paragraph 4.1):

• Rectangular space domain [xmin, xmax]× [ymin, ymax]: if such geometry is chosen, the
default definition of Ω is [−1, 5]× [0, 2].

• Backward-facing step-shaped domain (see Figure 1): if such geometry is chosen, the
default domain parameters are the following:

xmin = −1 , xmax = 5 , ymin = 0 , ymax = 2 , xstep = 0 , ystep = 1 .

• Dihedron-shaped domain (see Figure 2): if such geometry is chosen, the default
domain parameters are the following:

xmin = −1 , xmax = 5 , ymin = 0 , ymax = 2 , xA1 = 0 , yA1 = 1 , xA2 = 3 .

According to the chosen geometry, we define ym,l as follows:

ym,l =


ymin , if Ω is a rectangular domain,
ystep , if Ω is a backward-facing step domain,
yA1 , if Ω is a dihedron domain.

(5.56)

In any case, the initial state is characterized by

u0 =

(
1
0

)
, p0 = 0 , (5.57)

42



and there is no source term in the Navier-Stokes equation, i.e. f = 0.

For all geometries, we consider the following free boundary subpart:

∂ΩN = {xmax}×]ymin, ymax[ , (5.58)

and ∂ΩD = ∂Ω − ∂ΩN . In the case of a dihedron-shaped space domain, we consider the
following partition of ∂ΩD:

∂ΩD = ∂ΩD,B ∪ ∂ΩD,NS ∪ ∂ΩD,FSV , (5.59)

where

• ∂ΩD,B = {xmin}×]ym,l, ymax[ is the inlet velocity boundary,

• ∂ΩD,FSV = [xmin, xmax] × {ymax} is a Dirichlet-like extension of the inlet velocity
boundary,

• ∂ΩD,NS = ∂ΩD\ (∂ΩD,B ∪ ∂ΩD,FSV ) is the no-slip boundary.

To precise the definition of uD, we define the Blasius function (see [11]) as the solution
f : [0,+∞[→ R of 

2f ′′′ + ff ′′ = 0 , on ]0,+∞[,
f ′(0) = f(0) = 0 ,
limη→+∞ f

′(η) = 1 ,
(5.60)

we fix xs < xmin, and we introduce uB as

uB(x) =

(
uB,x(x)
uB,y(x)

)
, (5.61)

uB,x(x, y) = (∂ηf) (η(x, y)) ,

uB,y(x, y) = −1

2

1√
(x− xs)Re

[
f (η(x, y))− η(x, y)(∂ηf) (η(x, y))

] (5.62)

where η : Ω→ R is defined as

η(x, y) = (y − ym,l)

√
Re

x− xs
. (5.63)

Then the Dirichlet boundary conditions are the following:

uD(x, y) =


uB(x, y) , if (x, y) ∈ ∂ΩD,B,
uB(x, ymax) , if (x, y) ∈ ∂ΩD,FSV ,
0 , if (x, y) ∈ ∂ΩD,NS.

(5.64)

For managing the value of xs, the user can modify the following parameter in the setup file:
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PARAMETERS.PHYSICAL.XSTART = xs;

In the NONA test case, 3 kinds of boundary conditions can be applied on ∂ΩN . It can
be done by modifying the following parameters in the setup file:

PARAMETERS.FE.BC_RIGHT_UX = BC;

PARAMETERS.FE.BC_RIGHT_UY = BC;

where BC stands for one of the following boundary conditions for u:

• Homogeneous pseudo-traction conditions (BC = ’NEUMANN’) (default):

1

Re
(∇u) nΩ − pnΩ = 0 , on [0, T ]× ∂ΩN , (5.65)

• Homogeneous absorbing conditions (BC = ’NATURAL’):

1

Re
(∇u) nΩ − pnΩ −

1

2
Θ (u · nΩ + (1− 2α1) w · nΩ) (u−w)

−Θ ((1− α2) u · nΩ + (α2 − α3) w · nΩ) w =
1

Re
(∇w) nΩ − r nΩ ,

(5.66)

on [0, T ]× ∂ΩN , where (w, r) does not depend on t and is the solution of
1

Re
∆w −∇r = 0 , in Ω, (5.67a)

∇ ·w = 0 , in Ω, (5.67b)

w = w , on ∂Ω, (5.67c)

and w is defined as
w|∂ΩD

= uD , w|∂ΩN
= wN , (5.68)

where wN can be defined in two different ways:

– Blasius completion: define wN on ∂ΩN as

wN(x, y) =

(
(∂η̃f) (η̃(x, y))

−1
2

1√
(x−x̃s)Re

[f (η̃(x, y))− η̃(x, y)(∂η̃f) (η̃(x, y))]

)
, (5.69)

with η̃ defined as

η̃(x, y) = (y − ymin)

√
Re

x− x̃s
, (5.70)

44



and x̃s has to be identified as the unique solution in R of√
xmax − x̃s
xmax − xs

f

(
(ymax − ymin)

√
Re

xmax − x̃s

)

= f

(
(ymax − ym,l)

√
Re

xmax − xs

)
,

(5.71)

This completion can be chosen by setting

PARAMETERS.FE.BC_EXTENSIONREF = ’BLASIUS ’;

in the setup file.

– Couette completion: define wN on ∂ΩN as

wN(x, y) =

 W y−ymin

ymax−ymin

0

 , (5.72)

with

W =
2

ymax − ymin

√
Ux (xmax − xs)

Re
f (η(xmax, ymax)) . (5.73)

This completion can be chosen by setting

PARAMETERS.FE.BC_EXTENSIONREF = ’COUETTE ’;

in the setup file.
Finally, the function Θ is defined by Θ(a) = a − βa+ with default β = 1 and
the parameters α1, α2, α3 are set by default to 0.5, 1 and 1 respectively.

• Homogeneous stress-balance boundary conditions (BC = ’STRESS BALANCE’):

1

Re
(∇u) nΩ − pnΩ −

|u|2

2
S0(u · nΩ) nΩ = 0 , on [0, T ]× ∂ΩN , (5.74)

with

S0(u · nΩ) =
1

2

(
1− tanh

(
u · nΩ

δ

))
, (5.75)

where δ is set to 0.05 by default.

5.2.8 GTPSI: translation of a vortex

This test case is dedicated to the validation of free boundary condition implementation
like Absorbing boundary conditions or Stress-Balancing conditions (see paragraph 5.2.1).
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The purpose of this test case is to put a vortex in a rectangular domain, apply an inlet
velocity on the left part of the boundary and to observe the drift of the vortex until it
goes out of the domain.

The test case GTPSI does not involve any analytical solution and is described by the
following assumptions:

• There is no external forces, so f = 0,

• The space domain is rectangular and of the form Ω = [xmin, xmax] × [ymin, ymax]
(default domain Ω = [0, 1]2),

• The initial state is defined as follows:

u0(x, y) =

{
uBG(x, y) + uv(x, y) , if |x− xv|2 + |y − yv|2 < R2

v,trunc,
uBG(x, y) , else,

p0(x, y) = 0 ,

(5.76)

with the following definitions:

– uv writes as

uv(x, y) =
2av

r2
v

exp

(
−
|x− xv|2 + |y − yv|2

r2
v

) (
−y + yv
x− xv

)
, (5.77)

– xv = (xv, yv) is the vortex center and Rv,trunc > 0 is the truncation radius such
that the closed disc D(xv, Rv,trunc) is strictly embedded in Ω.
These parameters take the default values xv = (xmin+xmax

2
, ymin+ymax

2
) and Rv =

0.2 and can be modified in a setup file as follows:

% Coordinates of the vortex center

PARAMETERS.PHYSICAL.VORTEX_XC = xv;
PARAMETERS.PHYSICAL.VORTEX_YC = yv;
% Radius of the vortex support

PARAMETERS.PHYSICAL.VORTEX_RADIUS = Rv;

– av > 0 and rv > 0 are respectively the vortex amplitude and core size. Their
respective default values are av = 1 and rv = 0.2 and the user can modify them
in a setup file as follows:

% Vortex core size

PARAMETERS.PHYSICAL.VORTEX_CORESIZE = rv;
% Vortex intensity

PARAMETERS.PHYSICAL.VORTEX_INTENSITY = av;

– uBG is the background velocity and can be defined in two different ways:
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∗ Constant background velocity (default):

uBG(x, y) =

(
U
0

)
, (5.78)

with the inlet averaged velocity U is set to 1 by default. This configuration
can be chosen by setting

% Averaged inlet velocity

PARAMETERS.PHYSICAL.INLET_VELOCITY = U ;

% Type of inlet velocity

% (allowed values: ’CONSTANT ’ or ’POLYNOMIAL ’)

PARAMETERS.PHYSICAL.INLET_VELOCITY_KIND = ’CONSTANT ’;

∗ Polynomial background velocity:

uBG(x, y) =

 −6U (y2−y2
min−(ymin+ymax)(y−ymin))

(ymax−ymin)2

0

 , (5.79)

with the inlet averaged velocity U is set to 1 by default. This configuration
can be chosen by setting

% Averaged inlet velocity

PARAMETERS.PHYSICAL.INLET_VELOCITY = U ;

% Type of inlet velocity

% (allowed values: ’CONSTANT ’ or ’POLYNOMIAL ’)

PARAMETERS.PHYSICAL.INLET_VELOCITY_KIND = ’POLYNOMIAL ’;

• The bound domain ∂Ω is splitted into two parts ∂ΩD and ∂ΩN with

∂ΩN = {xmax}×]ymin, ymax[ , ∂ΩD = ∂Ω\∂ΩN , (5.80)

• The trace of velocity on the Dirichlet boundary is set as

uD(x, y) = uBG(x, y) , ∀ (x, y) ∈ ∂ΩD . (5.81)

• 3 kinds of boundary conditions can be applied on ∂ΩN . It can be done by modifying
the following parameters in the setup file:

PARAMETERS.FE.BC_RIGHT_UX = BC;

PARAMETERS.FE.BC_RIGHT_UY = BC;

where BC stands for one of the following boundary conditions for u:

– Homogeneous pseudo-traction conditions (BC = ’NEUMANN’) (default):

1

Re
(∇u) nΩ − pnΩ = 0 , on [0, T ]× ∂ΩN , (5.82)
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– Homogeneous absorbing conditions (BC = ’NATURAL’):

1

Re
(∇u) nΩ − pnΩ −

1

2
Θ (u · nΩ + (1− 2α1) w · nΩ) (u−w)

−Θ ((1− α2) u · nΩ + (α2 − α3) w · nΩ) w =
1

Re
(∇w) nΩ − r nΩ ,

(5.83)

on [0, T ]× ∂ΩN , where (w, r) does not depend on t and is the solution of
1

Re
∆w −∇r = 0 , in Ω, (5.84a)

∇ ·w = 0 , in Ω, (5.84b)

w = uBG , on ∂Ω, (5.84c)

and the function Θ is defined by Θ(a) = a − βa+ with default β = 1 and the
parameters α1, α2, α3 are set by default to 0.5, 1 and 1 respectively.

– Homogeneous stress-balance boundary conditions (BC = ’STRESS BALANCE’):

1

Re
(∇u) nΩ − pnΩ −

|u|2

2
S0(u · nΩ) nΩ = 0 , on [0, T ]× ∂ΩN , (5.85)

with

S0(u · nΩ) =
1

2

(
1− tanh

(
u · nΩ

U δ

))
, (5.86)

where δ is set to 0.05 by default.

48



6 Time semi-discretizations

We assume that a time grid (t0, . . . , tN) is provided, and satisfying

0 = t0 < t1 < · · · < tN = T , (6.1)

with ∆tn = tn+1 − tn defined for any n = 0, . . . , N − 1. In addition, we assume that N
is as small as possible and that all ∆tn are smaller than a given ∆t that can be chosen
by the user. Indeed, for a single run (no convergence or stability analysis), this bound is
defined as

∆t = Cmh
αm
min + CMh

αM
max , (6.2)

where hmin and hmax are respectively the minimal and maximal edge length in the pro-
vided space mesh, and Cm, CM , αm, αM can be specified by the user in the setup file by
modifying the following lines:

% Value of alphamax

PARAMETERS.FE.ALPHAMAX_STEP_TIME = αM ;

% Value of alphamin

PARAMETERS.FE.ALPHAMIN_STEP_TIME = αm;

% Value of Cmax

PARAMETERS.FE.CMAX_STEP_TIME = CM ;

% Value of Cmin

PARAMETERS.FE.CMIN_STEP_TIME = Cm;

Hence, the approximation of u (respectively p and ρ) associated with the space mesh
M and the time step bound ∆t is denoted with u∆t,M (respectively p∆t,M and ρ∆t,M) and,
for each tn in the time mesh associated to ∆t, u∆t,M(tn, ·) (respectively p∆t,M(tn, ·) and
ρ∆t,M(tn, ·)) is simply denoted with un (respectively pn and ρn).

6.1 Time splittings (specific to NSDV model)

In this paragraph, we describe the time splittings that can be applied to the NSDV model
(5.1). In the following lines, we denote with ρk : Ω → R, uk : Ω → R2 and pk : Ω → R
some approximations of ρ(tk, ·), u(tk, ·) and p(tk, ·) respectively.

At present time, Lax (order 1 in time) and Strang (order 2 in time) splittings are
available. We should recommend the use of Strang splitting since only BDF2-type and
MUSCL-type time semi-discretizations are implemented (these methods are second order
accurate in time).

6.1.1 Lax splitting

This choice can be made by modifying the setup file in the following way:

% Time splitting

% 1 1st order Lie splitting

% 2 2nd order symmetric Strang splitting

PARAMETERS.TIME_SPLITTING = 1;
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We assume that (ρk,uk, pk) are known for any k ≤ n:

1. ρn+1 is computed by the resolution of the following equation on [tn, tn+1]:{
∂tρ+∇ · (ρun) = 0 , (6.3a)

ρ(tn, ·) = ρn , (6.3b)

and we denote ρn+1 := ρ(tn+1, ·).

2. (un+1, pn+1) is computed by the resolution of the following linearized equation on
[tn, tn+1]: 

ρn+1
[
∂tu + (u],n+1 · ∇)u

]
+∇p =

1

Re
µ∆u + ρn+1 f , (6.4a)

∇ · u = 0 , (6.4b)

u(tn, ·) = un , (6.4c)

p(tn, ·) = pn , (6.4d)

and we denote un+1 := u(tn+1, ·), pn+1 := p(tn+1, ·).
In the equation above, u],n+1 is computed as an extrapolation of (uk)k= 0,...,n (see
Section 6.2 for the details).

6.1.2 Strang splitting

This choice can be made by modifying the setup file in the following way:

% Time splitting

% 1 1st order Lie splitting

% 2 2nd order symmetric Strang splitting

PARAMETERS.TIME_SPLITTING = 2;

We assume that (ρk,uk, pk) are known for any k ≤ n:

1. ρn+1 is computed by the resolution of the following equation on [tn, tn+1]:
∂tρ+∇ · (ρun) = 0 , (6.5a)

ρ(tn, ·) = ρn , (6.5b)

(6.5c)

and we denote ρn+1 := ρ(tn+1, ·).

2. (un+1, pn+1) is computed by the resolution of the following linearized equation on
[tn, tn+1]: 

ρn+1
[
∂tu + (u],n+1 · ∇)u

]
+∇p =

1

Re
µ∆u + ρn+1 f , (6.6a)

∇ · u = 0 , (6.6b)

u(tn, ·) = un , (6.6c)

p(tn, ·) = pn , (6.6d)
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and we denote un+1 := u(tn+1, ·), pn+1 := p(tn+1, ·).
In the equation above, u],n+1 is computed as an extrapolation of (uk)k= 0,...,n (see
Section 6.2 for the details).

3. (un+2, pn+2) is computed by the resolution of the following linearized equation on
[tn+1, tn+2]:

ρn+1
[
∂tu + (u],n+2 · ∇)u

]
+∇p =

1

Re
µ∆u + ρn+1 f , (6.7a)

∇ · u = 0 , (6.7b)

u(tn+1, ·) = un+1 , (6.7c)

p(tn+1, ·) = pn+1 , (6.7d)

and we denote un+2 := u(tn+2, ·), pn+2 := p(tn+2, ·).
In the equation above, u],n+2 is computed as an extrapolation of (uk)k= 0,...,n+1 (see
Section 6.2 for the details).

4. ρn+1 is computed by the resolution of the following equation on [tn+1, tn+2]:{
∂tρ+∇ · (ρun+2) = 0 , (6.8a)

ρ(tn+1, ·) = ρn+1 , (6.8b)

and we denote ρn+2 := ρ(tn+2, ·).

6.2 Time semi-discretizations for Navier-Stokes equation

In the following lines, we focus on the time semi-discretization of the following Navier-
Stokes equation:  ρ∗ [∂tu + (u · ∇)u] +∇p−

1

Re
∆u = ρ f ,

∇ · u = 0 ,
(6.9)

in Ω. In these equation, ρ∗ and f are given, and we consider the following decomposition
of ∂Ω:

∂Ω = ∂ΩD ∪ ∂ΩNa ∪ ∂ΩNe︸ ︷︷ ︸
=∂ΩN

, (6.10)

and we couple (6.9) the following boundary conditions:

u = uD , on [0, T ]× ∂ΩD,
u · nΩ = 0 , on [0, T ]× ∂ΩNa,(

1

Re
(∇u) nΩ

)
× nΩ = 0 , on [0, T ]× ∂ΩNa,

1

Re
(∇u) nΩ − pnΩ = gNe , on [0, T ]× ∂ΩNe,

(6.11)
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6.2.1 BDF2 ”direct” method

The more convenient way to discretize in time the system (6.9) is to consider the second
order Implicit Backward Differential Formula. Assuming that, for some n ∈ {1, . . . , N −
1}, we already know ρn+1, un and un−1, the couple (un+1, pn+1) is computed by solving
the following system:

ρn+1
[
αn un+1 + (u],n+1 · ∇) un+1

]
+∇pn+1 −

1

Re
∆un+1

= ρn+1 (fn+1 − βn un − γn un−1) , in Ω,
∇ · un+1 = 0 , in Ω,

un+1 = uD(tn+1, ·) , on ∂ΩD,

un+1 · nΩ = 0 , on ∂ΩNa,(
1

Re
(∇un+1) nΩ

)
× nΩ = 0 , on ∂ΩNa,

1

Re
(∇un+1) nΩ − pn+1 nΩ = gNe(t

n+1, ·) , on ∂ΩNe,

(6.12)

where αn, βn, γn are defined as

αn =
∆tn−1 + 2∆tn

∆tn (∆tn−1 + ∆tn)
, βn = −

∆tn−1 + ∆tn

∆tn−1 ∆tn
, γn =

∆tn

∆tn−1 (∆tn−1 + ∆tn)
. (6.13)

Finally, u],n+1 is an approximation of u(tn+1, ·) obtained with an extrapolation of un and
un−1. More precisely, it is defined as

u],n+1 =

(
1 +

∆tn

∆tn−1

)
un −

∆tn

∆tn−1
un−1 . (6.14)

To choose this time semi-discretization for Navier-Stokes equation, the user must spec-
ify the following parameters in the setup file:

% Time semi -discretization of the Stokes equation

PARAMETERS.FE.SCHEME = ’BDF2’;

6.2.2 BDF2 projection methods

A projection method derived from the BDF2 method (6.12)-(6.13)-(6.14) is also proposed
in NS2DDV code. This method is based on the use of an additional function sequence
(φn)n=0,...,N and the successive resolution of the following systems:
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1. Knowing (ρn−1,un−1, pn−1, φn−1), (ρn,un, pn, φn) and ρn+1, we first compute u],n+1

and p],n+1 where p],n+1 writes as

p],n+1 = pn−1 −
βn

αn−1
φn −

γn

αn−2
φn−1 , (6.15)

then we solve

ρn+1
[
αn un+1 + (u],n+1 · ∇) un+1

]
−

1

Re
∆un+1

= ρn+1 (fn+1 − βn un − γn un−1)−∇p],n+1 , in Ω,
un+1 = uD(tn+1, ·) , on ∂ΩD,

un+1 · nΩ = 0 , on ∂ΩNa,(
1

Re
(∇un+1) nΩ

)
× nΩ = 0 , on ∂ΩNa,

1

Re
(∇un+1) nΩ = gNe(t

n+1, ·) + p],n+1 nΩ , on ∂ΩNe,

(6.16)

2. We compute φn+1 by solving an elliptic problem. According to the chosen model and
the chosen test case, up to 3 ways for doing this job can be proposed (see [6, 7, 8, 9]
for futher details):

• PARAMETERS.FE.SCHEME = ’BDF2 PROJ’ (works for all models and all test cases):

∇ ·

(
1

αn ρ
∇φn+1

)
= ∇ · un+1 , in Ω,

∇φn+1 · nΩ = 0 , on ∂ΩD ∪ ∂ΩNa,

φn+1 = 0 , on ∂ΩNe,

(6.17)

where ρ = minΩ(ρ0),

• PARAMETERS.FE.SCHEME = ’BDF2 PROJ VAR’ (works for all test cases associ-
ated to the NSDV model):

∇ ·

(
1

αn ρn+1
∇φn+1

)
= ∇ · un+1 , in Ω,

∇φn+1 · nΩ = 0 , on ∂ΩD ∪ ∂ΩNa,

φn+1 = 0 , on ∂ΩNe,

(6.18)
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• PARAMETERS.FE.SCHEME = ’BDF2 PROJ VAR A’ (only works for test cases as-
sociated to the NSDV model and that involve an analytic solution):

∇ ·

(
1

αn ρex(tn+1, ·)
∇φn+1

)
= ∇ · un+1 , in Ω,

∇φn+1 · nΩ = 0 , on ∂ΩD ∪ ∂ΩNa,

φn+1 = 0 , on ∂ΩNe,

(6.19)

For each approach above, if ∂ΩNe = ∅, the Dirichlet condition on φn+1 above is
replaced by one of the following constrain for insuring the uniqueness of φn+1:

• Null average of φn+1:

∫
Ω

φn+1(x) dx = 0 is imposed. This choice can be done

in the setup file by choosing

% Time semi -discretization of the Stokes equation

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_AVERAGE ’;

• Null value of φn+1 on a specific point: provided with x∗ ∈ Ω, φn+1(x∗) = 0 is
imposed. This choice can be done in the setup file by choosing

% Time semi -discretization of the Stokes equation

PARAMETERS.FE.PRESSURE_CONSTRAIN = ’ZERO_FIXED_POINT ’;

In addition, the user must provide the coordinates of x∗ = (x∗, y∗) by modifying the
following parameters in the setup file:

% Time semi -discretization of the Stokes equation

PARAMETERS.FE.NFX_X = x∗;
PARAMETERS.FE.NFX_Y = y∗;

3. Independently of the value of PARAMETERS.FE.SCHEME, we compute pn+1 as follows:

pn+1 = pn + φn+1 − χ∇ · un+1 , (6.20)

where χ is a positive parameter that controls the ”rotational” correction of the pres-
sure pn+1. Its default value is set to 1

2Re
. This parameter can be managed in the

setup file by modifying the following line:

% Amplitude of the rotational term in the pressure correction

% for ’BDF2_PROJ*’ methods

PARAMETERS.FE.ROT_CORRECTION = 0.5/ PARAMETERS.PHYSICAL.RE;
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6.3 Time semi-discretizations for mass convervation equation
(only for NSDV model)

In the following lines, we present the time semi-discretization used for the generic mass
conservation law {

∂tρ+∇ · (ρu) = 0 ,
ρ(t = t0, ·) = ρ0 ,

(6.21)

where u : Ω→ R is assumed to be known. In NS2DDV, we use Heun’s method: with ρn

being known, we compute ρn+1 on Ω thanks to the following procedure:

1. Compute ρ∗ as
ρ∗ := ρn −∆tn∇ · (ρn u) , (6.22)

2. Deduce ρn+1 with

ρn+1 := ρn −
∆tn

2
[∇ · (ρn u) +∇ · (ρ∗ u)] . (6.23)
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7 Spatial discretizations

7.1 Mesh notations

We consider a space domain Ω ⊂ R2 on which a mesh M has been generated (see para-
graph 4.2 dedicated to the mesh generation methods that are available). What is called
mesh here is represented by a node set X and a triangle set T . In the next lines, we de-
scribe some additional data that can be used in the context of the Finite Element and/or
Finite Volume schemes used by NS2DDV.

For 3 distinct points A, B, C in Ω (see Figure 4), we denote with

• [A,B] as the segment with extremities A and B,

• AB as the vector going from A to B,

• ‖AB‖ as the length of the vector AB (and of the segment [A,B]),

• (A,B) as the unique line in R2 passing through A and B,

• ABC as the unique triangle with vertices A, B and C.

For each node A ∈ X , we add the following definitions (see also Figure 4):

• ntA as the number of triangles M ∈ T such that A ∈M ,

• NA = {A1, . . . ,AntA} as the set of the neighbouring vertices of A oriented in the
counter-clockwise order and Mi as the triangle AAiAi+1,

• A′i,i+1 as the control point of the triangle Mi,

• Ai,i+1 as the middle-point of [Ai,Ai+1],

• A′i as the middle-point of the segment [A,Ai] for any i = 1, . . . , ntA,

• Γ+
i = [A′i,A

′
i,i+1] and Γ−i = [A′i−1,i,A

′
i] for any i = 1, . . . , ntA, by using the conven-

tion
A1 = AntA+1, , A0 = AntA ,
A′1 = A′ntA+1 , A′0 = A′ntA ,

AntA,ntA+1 = AntA,1 , A0,1 = AntA−1,ntA ,
A′ntA,ntA+1 = A′ntA,1 , A′0,1 = A′ntA−1,ntA ,

• The dual cell CA as the polygon with bound defined as

∂CA =

ntA⋃
i= 1

Γ−i ∪ Γ+
i ,

and A ∈ CA,
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• n±i,A as the outward normal unit vector to CA on the edge Γ±i ,

• C±i as the middle-point of Γ±i ,

• G±A,i and H±A,i as the couple of points that are the intersections of the line (A,C±i )

and ∂CA such that G+
A,i ∈ [Ai,Ai+1], G−A,i ∈ [Ai−1,Ai], H±A,i ∈ [Ad±

i
,Ad±

i +1] for

some d±i ∈ {1, . . . , ntA},

• K±A,i and L±A,i as the couple of points that are the intersections of the line (Ai,C
±
i )

and ∂CA such that K+
A,i ∈ [A,Ai+1], K−A,i ∈ [A,Ai−1], L±A,i ∈ [Aiu±

i
,Aiu±

i +1] for

some u±i ∈ {1, . . . , ntAi
},

• D±A,Ai
as the downstream triangle AAd±i Ad

±
i +1 to edge [A,Ai]: note that

AC±i
‖AC±i ‖

·
AAd±

i
+ AAd±

i +1

‖AAd±
i

+ AAd±
i +1‖

is minimal, (7.1)

• U±A,Ai
as the upstream triangle AiAiu±i Aiu

±
i +1 to edge [A,Ai]: note that

AiC
±
i

‖AiC
±
i ‖
·

AiAiu±
i

+ AiAiu±
i +1

‖AiAiu±
i

+ AiAiu±
i +1‖

is minimal. (7.2)

Remark 7.1. Note that if, for any triangle Mi ∈ NA, its control point is chosen as the
barycenter, Ai,i+1 coincides with the intersection of (Ai,Ai+1) and (A,A′i,i+1) and A′i
coincides with the intersection of (A,Ai) and (Ai+1,A

′
i,i+1) (see Figure 4).

Such choice for cell control points produces star-shaped dual cells CA. It can be set by
the user by modifying the following lines in the setup file:

% Shape of dual cells (node -centered)

% (a dual cell is centered on a node and its bound is obtained by

% connecting the middle point of edges that start from the node and the

% neighbour cells control points)

% ’STARS ’ The cell control points are the barycenters

% ’SQUARES ’ The cell control points are the orthocenters (works only

% with PARAMETERS.MESH.GENERATION = ’NS2DDV ’)

PARAMETERS.FV.CELLS_DESIGN = ’STARS ’;

Remark 7.2. Assume that the considered domain Ω is a rectangle and is provided with a
structured mesh constituted of rectangle triangles with control points set as orthocenters.
In such case, for any node A of the mesh, the control volume CA is a square with vertices
AB,R,AT,R,AT,L,AB,L, and such that AR,AL,AT,AB are the respective middle-points
of [AT,R,AB,R], [AT,L,AB,L], [AT,L,AT,R], [AB,L,AB,R]. These notations are indepen-
dent of the value of ntA (see Figure 5).
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i
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i
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i
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i +1

D+
A,Ai

= D−A,Ai

Aiu+
i

Aiu+
i +1 = Aiu−

i

Aiu−
i +1

U+
A,Ai

U−A,AiC+
i

C−i

K+
A,i

K−A,i L+
A,i

L−A,i

Figure 4: Example of control volume CA with ntA = 6 and where the control points of
triangles are chosen as barycenters.

Such choice can be set by the user by modifying the following lines in the setup file:

% Shape of dual cells (node -centered)

% (a dual cell is centered on a node and its bound is obtained by

% connecting the middle point of edges that start from the node and the

% neighbour cells control points)

% ’STARS ’ The cell control points are the barycenters

% ’SQUARES ’ The cell control points are the orthocenters (works only

% with PARAMETERS.MESH.GENERATION = ’NS2DDV ’)

PARAMETERS.FV.CELLS_DESIGN = ’SQUARES ’;

7.2 Finite element methods

Finite element space discretizations are used in NS2DDV for solving the Navier-Stokes
equation. More precisely, NS2DDV uses P1 finite elements for discretizing the pressure
p, the auxiliary pressure r (see paragraph 5.2.1) and the φ function associated to BDF2
projection methods (see paragraph 6.2.2), and can use either P2 or P1,b (P1-bubble) ele-
ments for the velocity u and the auxiliary velocity w (see paragraph 5.2.1). It is possible
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M1
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AB,L

AT,L AT,R

A

Figure 5: Example of control volume CA with ntA = 6 and where the control points of
triangles are chosen as orthocenters.

for the user to choose the finite elements for velocity by modifying the setup file as follows:

% Space discretization of velocity

% ’P1B ’ P1 -bubble finite elements approximation

% ’P2 ’ P2 finite elements approximation

PARAMETERS.FE.TYPE = ’P2’;

We briefly recall what are these finite element discretizations and how they are used
in NS2DDV.

We first define a reference triangle M̂ with vertices (0, 0), (1, 0), (0, 1). Secondly, we
define the reference basis functions corresponding to a finite element method as a set of
polynomial functions P̂ = (ϕ̂i)i= 1,...,nd with ϕ̂i : M̂ → R, and the corresponding set of

reference nodes Σ̂ = (x̂i)i= 1,...,nd such that ϕ̂i(x̂j) = δi,j for any i, j ∈ J1, ndK. The finite
element methods that are considered in NS2DDV are the following:

• P1 finite elements: nd = 3, and the reference basis functions and nodes are defined
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as
x̂1 = (0, 0) , ϕ̂1(x̂, ŷ) = 1− x̂− ŷ ,
x̂2 = (1, 0) , ϕ̂2(x̂, ŷ) = x̂ ,
x̂3 = (1, 0) , ϕ̂3(x̂, ŷ) = ŷ .

(7.3)

• P2 finite elements: nd = 6, and the reference basis functions and nodes are defined
as

x̂1 = (0, 0) , ϕ̂1(x̂, ŷ) = 1− 3x̂− 3ŷ + 4x̂ŷ + 2x̂2 + 2ŷ2 ,
x̂2 = (1, 0) , ϕ̂2(x̂, ŷ) = 2x̂2 − x̂ ,
x̂3 = (1, 0) , ϕ̂3(x̂, ŷ) = 2ŷ2 − ŷ ,
x̂4 = (1

2
, 1

2
) , ϕ̂4(x̂, ŷ) = 2x̂ŷ ,

x̂5 = (0, 1
2
) , ϕ̂5(x̂, ŷ) = 4ŷ − 4x̂ŷ + 4ŷ2 ,

x̂6 = (1
2
, 0) , ϕ̂6(x̂, ŷ) = 4x̂− 4x̂ŷ + 4x̂2 .

(7.4)

• P1,b finite elements: nd = 4, and the reference basis functions and nodes are defined
as

x̂1 = (0, 0) , ϕ̂1(x̂, ŷ) = (1− x̂− ŷ) (1− 9x̂ŷ) ,
x̂2 = (1, 0) , ϕ̂2(x̂, ŷ) = x̂ (1− 9(1− x̂− ŷ) ŷ) ,
x̂3 = (1, 0) , ϕ̂3(x̂, ŷ) = ŷ (1− 9 (1− x̂− ŷ) x̂) ,
x̂4 = (1

3
, 1

3
) , ϕ̂4(x̂, ŷ) = 27 (1− x̂− ŷ) x̂ŷ .

(7.5)

For each triangle M = ABC ∈ T , we define the affine bijective map φM : M̂ →M as

φM(x̂) =

(
xB − xA xC − xA
yB − yA yC − yA

)
x̂ +

(
xA
yA

)
. (7.6)

Then we define PM = (ϕM,i)i= 1,...,nd and ΣM = (xM,i)i= 1,...,nd with

ϕM,i = ϕ̂i ◦ φ−1
M , xM,i = φM(x̂i) , (7.7)

for any i = 1, . . . , nd and for any M ∈ T .
We finally define the node set Σ as

Σ = (xk)k= 1,...,#Σ :=
⋃
M ∈T

ΣM , (7.8)

and the basis function set P = (ϕk)k= 1,...,#Σ with

ϕk |M :=

{
ϕM,i , if ∃ i ∈ J1, ndK such that xk = xM,i,
0 , else,

(7.9)

for any k = 1, . . . ,#Σ and for any M ∈ T .
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In order to apply a finite element spatial discretization to one of the time semi-discrete
systems (6.12), (6.16)-(6.17), (6.16)-(6.18) or (6.16)-(6.19), we proceed as follows. In
NS2DDV, the density ρ, the pressure p, the auxiliary pressure r and the φ function
associated to BDF2 projection methods are discretized in space with P1 finite elements,
meaning that we write

ρn =
∑

ϕk ∈Σρ

ρnk ϕk , (7.10)

and
rn =

∑
ϕk ∈Σp

rnk ϕk ,

φn =
∑

ϕk ∈Σp

φnk ϕk ,

pn =
∑

ϕk ∈Σp

pnk ϕk ,

(7.11)

for any time step n, where Σp = Σρ is the function basis set associated to P1 elements.
In the same spirit, the velocity u and the auxiliary velocity w are discretized with P2 or
P1,b finite elements, so we write

un =


∑

ψk ∈Σu

unx,k ψk∑
ψk ∈Σu

uny,k ψk

 , wn =


∑

ψk ∈Σu

wnx,k ψk∑
ψk ∈Σu

wny,k ψk

 , (7.12)

for any time step n, where Σu is the function basis set associated to P2 or P1,b elements, ac-
cording to the value of PARAMETERS.FE.TYPE that is provided by the user in the setup file.

A fully-discrete version of (6.12) is obtained as follows: for any node xk ∈ Σu such
that xk ∈ ∂ΩD, we set

uk
n+1 = uD(tn+1,xk) , (7.13)

and for any other node xk ∈ Σu, we consider the following linear combinations involving
(ρn+1
k )k= 1,...,#Σρ , (umx,k)k= 1,...,#Σu (m = n−1, n, n+1), (umy,k)k= 1,...,#Σu (m = n−1, n, n+1),

(p∗,n+1
k )k= 1,...,#Σp :∫

Ω

[
ρn+1

[
αnunx + (u],n+1 · ∇)un+1

x

]
ψu,k +

1

Re
∇un+1

x · ∇ψu,k − pn+1 ∂xψu,k

]
dx

=

∫
∂ΩNe

gNe,x(t
n+1, ·)ψu,k dσ +

∫
Ω

ρn+1
[
fn+1
x − βn unx − γn un−1

x

]
ψu,k dx ,

(7.14)

∫
Ω

[
ρn+1

[
αnuny + (u],n+1 · ∇)un+1

y

]
ψu,k +

1

Re
∇un+1

y · ∇ψu,k − pn+1 ∂yψu,k

]
dx

=

∫
∂ΩNe

gNe,y(t
n+1, ·)ψu,k dσ +

∫
Ω

ρn+1
[
fn+1
y − βn uny − γn un−1

y

]
ψu,k dx ,

(7.15)
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∫
Ω

(
∇ · un+1

)
ψp,l dx = 0 , (7.16)

for any basis function ψu,k ∈ Pu such that xk /∈ ∂ΩD and for any basis function ψp,l ∈ Pp.
Coupled with the discrete Dirichlet boundary conditions, we obtain a linear system in
which the unknowns are (un+1

x,k )k= 1,...,#Σu , (un+1
y,k )k= 1,...,#Σu , (pn+1

l )l= 1,...,#Σp .

A fully-discrete version of (6.16) is obtained by replacing equations (7.14)-(7.15)-(7.16)
by

∫
Ω

[
ρn+1

[
αnunx + (u],n+1 · ∇)un+1

x

]
ψu,k +

1

Re
∇un+1

x · ∇ψu,k

]
dx

=

∫
∂ΩNe

gNe,x(t
n+1, ·)ψu,k dσ

+

∫
Ω

[
ρn+1

[
fn+1
x − βn unx − γn un−1

x

]
ψu,k + p],n+1 ∂xψu,k

]
dx ,

(7.17)

∫
Ω

[
ρn+1

[
αnuny + (u],n+1 · ∇)un+1

y

]
ψu,k +

1

Re
∇un+1

y · ∇ψu,k

]
dx

=

∫
∂ΩNe

gNe,y(t
n+1, ·)ψu,k dσ

+

∫
Ω

[
ρn+1

[
fn+1
y − βn uny − γn un−1

y

]
ψu,k + p],n+1 ∂yψu,k

]
dx ,

(7.18)

for any basis function ψu,k ∈ Pu such that xk /∈ ∂ΩD. Coupled with the discrete
Dirichlet boundary conditions, we obtain a linear system in which the unknowns are
(un+1

x,k )k= 1,...,#Σu and (un+1
y,k )k= 1,...,#Σu .

To obtain the pressure (pn+1
k )k= 1,...,#Σp , we compute (φn+1

k )k= 1,...,#Σp by solving the
linear system constituted of

−
∫

Ω

1

αn ρ̂
∇φn+1 · ∇ψp,l dx =

∫
Ω

(∇ · un+1)ψp,l dx (7.19)

for any ψp,l ∈ Pp such that xl /∈ ∂ΩNe and of the Dirichlet conditions

φn+1
l = 0 , ∀xl ∈ Σp such that xl ∈ ∂ΩNe. (7.20)

In (7.19), ρ̂ is replaced either by ρ̄, ρn+1 or ρex(t
n+1, ·) according to the value of the setup

parameter PARAMETERS.FE.SCHEME (see paragraph 6.2.2).
(pn+1
k )k= 1,...,#Σp is finally obtained by inverting the linear system constituted of∫

Ω

pn+1 ψp,l dx =

∫
Ω

(pn + φn+1 − χ∇ · un+1)ψp,l dx , (7.21)

for all ψp,l ∈ Pp.
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7.3 Finite volume methods

We describe here the discretization in space of the following mass conservation law:

∂tρ+∇ · (ρu) = 0 , (7.22)

where u : Ω → R2 is given and ρ : Ω → R has be to be identified. At present time,
NS2DDV is only based on the use of MUSCL-type Finite Volume schemes for solving
(7.22). Such choice is motivated by the fact that MUSCL methods are node-centered
methods and second order accurate in time and space.

7.3.1 MUSCL-type methods

Considering a mesh node A ∈ X , we denote with ρA : [0, T ] → R the approximation of
ρ(·,A). Hence, assuming that u is constant on each Γ±i and ρ is constant on each control
volume CA, we replace the equation above by

∂tρA +
1

|CA|

ntA∑
i= 1

[
u?,−i,A · n

−
i

∫
Γ−
i

ρ dσ + u?,+i,A · n
+
i

∫
Γ+
i

ρ dσ

]
= 0 , (7.23)

where the u±i,A are built from the finite element discretization of the velocity u. Such
FE-FV coupling method has been introduced in [4] and is insured as follows:

• Assume that the velocity is computed thanks to the BDF2 direct method (Eqs.
(6.12)):

– Considering that the velocity is discretized on P2 finite elements means that
u is approached on points A, (Ai)i, (Ai,i+1)i and (A′i)i by uA, (ui)i, (ui,i+1)i
and (u′i)i respectively. Consequently, we have

u+
i,A = u+

i,A =
1

3
(u′i + u′i+1 + ui,i+1) ,

u−i,A = u−i,A =
1

3
(u′i−1 + u′i + ui−1,i) ,

(7.24)

– Considering that the velocity is discretized on P2 finite elements means that
u is approached on points A, (Ai)i and (A′i,i+1)i by uA, (ui)i and (u′i,i+1)i
respectively. Consequently, we have

u+
i,A =

11

60
(ui + ui+1 + uA) +

27

60
u′i,i+1 ,

u−i,A =
11

60
(ui−1 + ui + uA) +

27

60
u′i−1,i ,

(7.25)

63



• Assume now that velocity is computed thanks to one of the BDF2 projection meth-
ods. In such case, the formulae (7.24) and (7.25) are corrected into

u+
i,A = u+

i,A −
1

α

1

ρMi

(∇φ)Mi
, u−i,A = u−i,A −

1

α

1

ρMi−1

(∇φ)Mi−1
, (7.26)

where u±i,A are computed with (7.24) or (7.25) according to the velocity space dis-
cretization, α is the constant αn in (6.17) (or (6.18) or (6.19)), and

1

ρMi

=


1

minΩ(ρ0)
, with method (6.16)-(6.17),

1
3

(
1
ρA

+ 1
ρAi

+ 1
ρAi+1

)
, with methods (6.16)-(6.18) or (6.16)-(6.19).

(7.27)

The average values of ρ on Γ+
i and Γ−i are computed as follows:∫

Γ+
i

ρ dσ =

{
|Γ+
i | ρ̃+

Ai,Ai
, if u+

i · n
+
i ≤ 0,

|Γ+
i | ρ̃+

A,Ai
, if u+

i · n
+
i > 0,

(7.28)

∫
Γ−
i

ρ dσ =

{
|Γ−i | ρ̃−Ai,Ai

, if u−i · n
−
i ≤ 0,

|Γ−i | ρ̃−A,Ai
, if u−i · n

−
i > 0,

(7.29)

For computing the terms ρ̃±Ai,Ai
and ρ̃±A,Ai

, we can use a monoslope approach or a
multislope procedure (default).

Monoslope procedure without flux limiter

Such approach has been investigated in [4, ?]. This feature can be activated in
NS2DDV by modifying the setup file as follows:

% Flux limiter method

% ’NOLIM ’ No flux limiter

% ’STDLIM ’ Mono -slope flux limiter

% ’TAULIM ’ Multi -slope flux limiter (only with

% PARAMETERS.FV.CELLS_DESIGN = ’STARS ’ and

% PARAMETERS.FV.GRADIENT_COMPUTING = ’PRECEEDING ’)

PARAMETERS.FV.FLUX_LIMITER = ’NOLIM ’;

Recalling the definition of Ci
± as the middle-point of Γ±i , we provide ρ̃±A,Ai

and ρ̃±Ai,Ai

with the following second order definition:

ρ̃±A,Ai
= ρA +∇±ρA,Ai

·ACi
± , ρ̃±Ai,Ai

= ρAi
+∇±ρAi,Ai

·AiCi
± , (7.30)

with ∇±ρA,Ai
defined as

∇±ρA,Ai
= β∇±ρA,Ai

+ (1− β)∇±ρA,Ai
, (7.31)
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∇+ρA,Ai
= (∇ρ)Mi

, ∇−ρA,Ai
= (∇ρ)Mi−1

, (7.32)

with β ∈ [0, 1]. This parameter is set by default to 1/3 in NS2DDV but it can be managed
fixed in the setup file by the user by modifying the following line:

% Beta parameter in gradient reconstruction

% (should be in [0,1]; default value = 1/3)

PARAMETERS.FV.BETA = 1./3.;

Concerning ∇±ρA,Ai
, two definitions are proposed:

• A “surrounding” approximation of ∇ρ on node A:

∇+ρA,Ai
= ∇−ρA,Ai

=

ntA∑
j= 1

|Mj| (∇ρ)Mj

ntA∑
j= 1

|Mj|
, ∀ i = 1, . . . , ntA . (7.33)

This choice can be done in the setup file as follows:

% Gradient reconstruction method

%’PRECEEDING ’ Use the gradient on the upstream cell

%’SURROUNDING ’ Use an average of the gradient on the neighbour

% cells

% WARNING: this parameter is ignored if

% PARAMETERS.FV.CELLS_DESIGN = ’SQUARES ’

PARAMETERS.FV.GRADIENT_COMPUTING = ’SURROUNDING ’;

• A “downstream/upstream” approximation of ∇ρ on node A:

∇±ρA,Ai
= (∇ρ)D±

A,Ai

, ∇±ρAi,Ai
= (∇ρ)U±

A,Ai

. (7.34)

This choice can be done in the setup file as follows:

% Gradient reconstruction method

%’PRECEEDING ’ Use the gradient on the upstream cell

%’SURROUNDING ’ Use an average of the gradient on the neighbour

% cells

% WARNING: this parameter is ignored if

% PARAMETERS.FV.CELLS_DESIGN = ’SQUARES ’

PARAMETERS.FV.GRADIENT_COMPUTING = ’PRECEEDING ’;

Finally, each (∇ρ)M (M ∈ T ) is computed as a uniform vector. Denoting M = ABC,
(∇ρ)M writes as

(∇ρ)M =
1

2|T |

(
yC − yA yA − yB
xA − xC xB − xA

) (
ρB − ρA
ρC − ρA

)
. (7.35)
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Monoslope procedure with flux limiter

Such approach can be selected by modifying the setup file as follows:

% Flux limiter method

% ’NOLIM ’ No flux limiter

% ’STDLIM ’ Mono -slope flux limiter

% ’TAULIM ’ Multi -slope flux limiter (only with

% PARAMETERS.FV.CELLS_DESIGN = ’STARS ’ and

% PARAMETERS.FV.GRADIENT_COMPUTING = ’PRECEEDING ’)

PARAMETERS.FV.FLUX_LIMITER = ’STDLIM ’;

In such case, a flux limiter is used for improving the the finite volume method. More
precisely, the definition of ρ̃±A,Ai

and ρ̃±Ai,Ai
given in (7.30)-(7.31) is replaced by

ρ̃±A,Ai
= ρA + β ψ(r±A,Ai

) + (1− β)ψ

(
1

r±A,Ai

)
, (7.36)

ρ̃±Ai,Ai
= ρAi

+ β ψ(r±Ai,Ai
) + (1− β)ψ

(
1

r±Ai,Ai

)
, (7.37)

with

r±A,Ai
=
p±,down
A,Ai

p±,up
A,Ai

, r±Ai,Ai
=
p±,down
Ai,Ai

p±,up
Ai,Ai

, (7.38)

and

p±,down
A,Ai

= ∇±ρA,Ai
·AC±i , p±,down

Ai,Ai
= ∇±ρAi,Ai

·AiC
±
i ,

p±,up
A,Ai

= ∇±ρA,Ai
·AC±i , p±,down

Ai,Ai
= ∇±ρAi,Ai

·AiC
±
i ,

(7.39)

Finally, ψ : R→ R is a flux limiter function that can be defined as follows:

• Van Leer: ψ(r) =
r + |r|
1 + |r|

1[ε,+∞[(r),

• Minmod: ψ(r) = max(0,min(1, r))1[ε,+∞[(r),

• Van Albada: ψ(r) = max

(
0,
r + r2

1 + r2

)
1[ε,+∞[(r),

• Superbee: ψ(r) = max(0,min(1, 2r),min(2, r))1[ε,+∞[(r).

To choose the flux limiter function and the threshold ε (default value ε = 10−6), the user
can modify the setup file as follows:
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% Flux limiter function (ignored if PARAMETERS.FV.FLUX_LIMITER = ’NONE ’)

% ’MINMOD ’ Min -Mod limiter

% ’VANLEER ’ Van Leer limiter

% ’SUPERBEE ’ Super -bee limiter (only with

% PARAMETERS.FV.FLUX_LIMITER = ’STDLIM ’)

% ’VANALBADA ’ Van Albada limiter (only with

% PARAMETERS.FV.FLUX_LIMITER = ’STDLIM ’)

PARAMETERS.FV.FLUX_LIMITER_FUNCTION = ’VANLEER ’;

% Flux limiter usage threshold

% (ignored if PARAMETERS.FV.FLUX_LIMITER = ’NOLIM ’)

PARAMETERS.FV.EPSILON = ε;

Multislope procedure with flux limiter

Such approach can be selected by modifying the setup file as follows:

% Flux limiter method

% ’NOLIM ’ No flux limiter

% ’STDLIM ’ Mono -slope flux limiter

% ’TAULIM ’ Multi -slope flux limiter (only with

% PARAMETERS.FV.CELLS_DESIGN = ’STARS ’ and

% PARAMETERS.FV.GRADIENT_COMPUTING = ’PRECEEDING ’)

PARAMETERS.FV.FLUX_LIMITER = ’TAULIM ’;

In such case, the definition of ρ̃±A,Ai
and ρ̃±Ai,Ai

given in (7.30)-(7.31) is replaced by

ρ̃±A,Ai
= ρA + p±A,Ai

‖ACi
±‖ , ρ̃±Ai,Ai

= ρAi
+ p±Ai,Ai

‖AiCi
±‖ , (7.40)

with p±A,Ai
and p±Ai,Ai

are defined as

p±A,Ai
= p±,up

A,Ai
ψ
(
r±A,Ai

)
, p±Ai,Ai

= p±,up
Ai,Ai

ψ
(
r±Ai,Ai

)
, (7.41)

with

r±A,Ai
=
p±,down
A,Ai

p±,up
A,Ai

, r±Ai,Ai
=
p±,down
Ai,Ai

p±,up
Ai,Ai

, (7.42)

and

p±,up
A,Ai

=
ACi

±

‖ACi
±‖
· (∇ρ)D±

A,Ai

, p±,up
Ai,Ai

=
AiCi

±

‖AiCi
±‖
· (∇ρ)U±

A,Ai

, (7.43)

p+,down
A,Ai

=
ACi

+

‖ACi
+‖
· (∇ρ)Mi

, p−,down
A,Ai

=
ACi

−

‖ACi
−‖
· (∇ρ)Mi−1

,

p+,down
Ai,Ai

=
AiCi

+

‖AiCi
+‖
· (∇ρ)Mi

, p−,down
Ai,Ai

=
AiCi

−

‖AiCi
−‖
· (∇ρ)Mi−1

.

(7.44)

Finally, the flux limiter function can be defined as one of the following ones:
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• Van Leer: ψ(r) =


r + (τ − 1) r

(τ − 1) r
, if r > 1,

r + (τ − 1) r

1 + (τ − 1) r
, if r ∈ [ε, 1],

0 , else,

• Minmod: ψ(r) = max(0,min(1, r))1[ε,+∞[(r),

with τ taken as the inverse of

max
A∈X

max
i= 1,...,ntA

(
AA′i,i+1 ·AAi

AG+
A,i ·AAi

,
AA′i−1,i ·AAi

AG−A,i ·AAi

)
.

To choose the flux limiter function and the threshold ε (default value ε = 10−6), the
user can modify the setup file as follows:

% Flux limiter function (ignored if PARAMETERS.FV.FLUX_LIMITER = ’NONE ’)

% ’MINMOD ’ Min -Mod limiter

% ’VANLEER ’ Van Leer limiter

% ’SUPERBEE ’ Super -bee limiter (only with

% PARAMETERS.FV.FLUX_LIMITER = ’STDLIM ’)

% ’VANALBADA ’ Van Albada limiter (only with

% PARAMETERS.FV.FLUX_LIMITER = ’STDLIM ’)

PARAMETERS.FV.FLUX_LIMITER_FUNCTION = ’VANLEER ’;

% Flux limiter usage threshold

% (ignored if PARAMETERS.FV.FLUX_LIMITER = ’NOLIM ’)

PARAMETERS.FV.EPSILON = ε;

Some details about the numerical behaviour of such method can be found in [3].
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8 Visualization and post-processing

8.1 In-situ visualization

NS2DDV offers some in-situ visualization tools, i.e. the ability to visualize the numerical
results in Matlab figures as soon as they are calculated. To activate this tool, the user
must specify the following parameters in the setup file before running the simulation:

PARAMETERS.OUTPUT.XDISPLAY = ’SINGLE_FIGURE ’;

or

PARAMETERS.OUTPUT.XDISPLAY = ’MULTIPLE_FIGURE ’;

The ’SINGLE FIGURE’ option produces a single Matlab figure window in which the results
are plotted in subplot regions, and the ’MULTIPLE FIGURE’ option produces a Matlab
figure window per 2D result that is asked for plotting.

Remark 8.1. According to the Matlab release version, the ’SINGLE FIGURE’ may be
unstable.

If one of these two solutions is chosen for in-situ visualization, it is possible to se-
lect a list of 2D diagnostics to be plotted. To do this, the user shall modify the list
PARAMETERS.OUTPUT.XDISPLAY LIST in the setup file. Such diagnostics are listed in Ta-
ble 4. When a manufactured test case is run (EXAC or EXACNEU), additional 2D
diagnostics linked to the exact solution are available (see Table 5). For example, for visu-
alizing the mesh, the velocity u as a vector field, the pressure and its first order derivative,
the user should set

% List of 2D results to be plotted :

% ...

PARAMETERS.OUTPUT.XDISPLAY_LIST = {’MESH’, ’U_VECTOR ’, ’P’, ...

’P_DX’, ’P_DY’};

In addition, it is possible to set the refreshing frequency of the figure windows. By de-
fault, they are refreshed after each iteration of the time solver. To modify this refreshing
frequency, the user must modify the following parameter in the setup file:

PARAMETERS.OUTPUT.XDISPLAY_FREQUENCY = 1;

8.2 Saving numerical results

NS2DDV can save the numerical results of each run under a sequence of files with Matlab
binary (.mat) or HDF5 (.h5) format.

According to the Matlab release that is used, NS2DDV will choose outputs under .mat
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(Matlab R2010b and older) or .h5.

To manage these output files, the user can modify the following parameters in the
setup file:

% Directory for numerical results

PARAMETERS.OUTPUT.DIRECTORY_NAME = ’/path/to/results ’;

% Prefix of output file(s)

PARAMETERS.OUTPUT.FILE_NAME = ’diags ’;

% Save method of these results :

% ’LAST_FRAME ’ The solution is only saved at final time

% ’ANIMATION ’ If time dynamics is considered , an animated result

% is saved

% ’NONE ’ Only the log file is saved

PARAMETERS.OUTPUT.XDISPLAY_SAVE = ’NONE’;

According to the choice for PARAMETERS.OUTPUT.XDISPLAY SAVE, NS2DDV will pro-
duce a specific output file set:

• ’ANIMATION’: a set files with name diags n.h5 (or .mat) is generated, where diags
is the prefix that is chosen for PARAMETERS.OUTPUT.FILE NAME and n is the file num-
ber.
Such choice is relevant for studying and/or visualizing the time dynamics of a sim-
ulation after it has been fully computed.

Each of these files is associated to the results of a unique iteration in the time solver.
By default, the results are saved for each time iteration but it is possible to manage
this save frequency with the following setup parameter:

% Refreshing frequency for save 2D results (default = 1)

PARAMETERS.OUTPUT.XDISPLAY_SAVE_FREQUENCY = 1;

Each of these files is also associated to a mesh file that contains the data of the
mesh on which the results can be plotted. Such mesh file is usually named with the
syntax diags MESH k.h5, where k stands for the k-modification of the initial mesh3.
For insuring visualization and/or postprocessing, it is highly recommended to put
the output result file and the associated mesh files in the same directory. In the
case of a non-adaptative mesh, there is a unique mesh file named diags MESH 0.h5.

If HDF5 files are generated, each output result result file is associated with a Xdmf
decriptor file (same file name, but .xdmf extension). These reader files are manda-
tory for visualization with external visualization softwares like Visit.

3Numerical methods involving adaptative meshes are not implemented yet. Consequently a unique
mesh file with be produced.
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• ’LAST FRAME’: the output results are structured in the same way as for ’ANIMATION’
but only last time iteration is saved.
Such choice is relevant for developing new branches in the code and validating the
computations.

• ’NONE’: no .h5/.mat file is produced.
Such choice is relevant for performing a numerical convergence study where only log
files are necessary.

If the solution ’ANIMATION’ or ’LAST FRAME’ has been selected, it is possible to
enrich the list of 2D diagnostics to be saved. To do this, the user shall fill the list
PARAMETERS.OUTPUT.XDISPLAY SAVE OPTDIAGS in the setup file with some fields listed in
Table 2 (and Table 3 if a manufactured test case is considered). For example, if the user
wants to save the first order derivatives of the pressure in addition of the default saves,
(s)he must write the following line in the setup file:

% List of optional diagnostics

PARAMETERS.OUTPUT.XDISPLAY_SAVE_OPTDIAGS = {’P_DX’, ’P_DY’};

Note that selecting ’GRAD P’, ’P DX’ or ’P DY’ will automatically save the three fields.
A same automatism is applied to the following field sets:

• ’GRAD P’, ’P DX’ and ’P DY’,

• ’GRAD P EX’, ’P DX EX’ and ’P DY EX’,

• ’W VECTOR’, ’WX’ and ’WY’.

8.3 Visualization from a result file

NS2DDV includes some solutions for visualizing the contents of .mat/.h5 files.
By default, the user can run the Matlab routines that are embedded in NS2DDV

sources. These routines are dedicated to a simple visualization of results without saving.
In addition, it is possible to use the Python-Matplotlib scripts provided in the subdi-

rectory PYTHON in the NS2DDV source files.

8.3.1 Matlab solution

NS2DDV embeds Matlab routines named plot from file and movie from file that al-
low to plot some 2D diagnostics from a single .mat or .h5 file or visualize the dynamics
from a file set that has been generated by a previous run of the code.

To plot the 2D results from a single file, the user must move to the root path of
NS2DDV, then type the following commands:
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2D diagnostic
Name in

the setup file
Restrictions

Saving in
.h5/.mat files

Mesh ’MESH’ - By default
Density
ρ (scalar)

’RHO’
Only with

NSDV model
By default

Velocity
u (vector)

’U VECTOR’ - By default

x-part of velocity
ux (scalar)

’UX’ - By default

y-part of velocity
uy (scalar)

’UY’ - By default

∂xux (scalar) ’DX UX’ - Optional
∂yux (scalar) ’DY UX’ - Optional
∂xuy (scalar) ’DX UY’ - Optional
∂yuy (scalar) ’DY UY’ - Optional
Shear rate

∂yux + ∂xuy (scalar)
’SHEAR’ - Optional

Velocity magnitude
|u|2 (scalar)

’U MODULE’ - By default

Vorticity
ω (scalar)

’VORTIC’ - By default

Velocity streamlines
ψ (scalar)

’STREAM’ - By default

Pressure
p (scalar)

’P’ - By default

Pressure gradient
∇p (vector)

’P GRAD’ - Optional

∂xp (scalar) ’P DX’ - Optional
∂yp (scalar) ’P DY’ - Optional

Auxiliary velocity
w (vector)

’W VECTOR’
Only with Absorbing
boundary conditions

Optional

x-part of auxiliary
velocity wx (scalar)

’WX’
Only with Absorbing
boundary conditions

Optional

y-part of auxiliary
velocity wy (scalar)

’WY’
Only with Absorbing
boundary conditions

Optional

Auxiliary pressure
r (scalar)

’R’
Only with Absorbing
boundary conditions

Optional

Table 2: List of 2D diagnostics
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2D diagnostic
Name in

the setup file
Restrictions

Saving in
.h5/.mat files

Exact density
ρex (scalar)

’RHO EX’
Only with

NSDV model
Optional

Exact velocity
uex (vector)

’U VECTOR EX’ - By default

x-part of exact velocity
ux,ex (scalar)

’UX EX’ - By default

y-part of exact velocity
uy,ex (scalar)

’UY EX’ - By default

∂xux,ex (scalar) ’DX UX EX’ - Optional
∂yux,ex (scalar) ’DY UX EX’ - Optional
∂xuy,ex (scalar) ’DX UY EX’ - Optional
∂yuy,ex (scalar) ’DY UY EX’ - Optional

Exact shear rate
∂yux,ex + ∂xuy,ex (scalar)

’SHEAR EX’ - Optional

Exact velocity magnitude
|uex|2 (scalar)

’U MODULE EX’ - By default

Exact vorticity
ωex (scalar)

’VORTIC EX’ - By default

Exact velocity streamlines
ψex (scalar)

’STREAM EX’ - By default

Exact pressure
pex (scalar)

’P EX’ - By default

Exact pressure gradient
∇pex (vector)

’P GRAD EX’ - Optional

∂xpex ’P DX EX’ - Optional
∂ypex ’P DY EX’ - Optional

Table 3: List of specific 2D diagnostics for manufactured test cases (EXAC, EXACNEU)
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>> load_paths ();

>> plot_from_file(namefile , XDISPLAY_LIST , LEVELS , XDISPLAY_METHOD , ...

typeplot , nbrows , nbcols );

The first command is useful for loading all subdirectories of NS2DDV and to access
to all routines within the sources. Once it is done, the user can run plot from file with
the following arguments:

• namefile (string) is the name of the file to be read (single .mat or .h5 file),

• XDISPLAY LIST is a cell line where each cell is a diagnostic to be plotted (see Tables
4-5). Here is a example of such list:

>> XDISPLAY_LIST = {’MESH’, ’P’, ’UX’, ’UY’, ’U_VECTOR ’};

• LEVELS is a cell line that contains the isovalues for each scalar diagnostic. This
cell line must have the same size as XDISPLAY LIST. If the user wants to fix the
isovalues, (s)he must provide an line vector containing the required isovalues. In
the other cases, the user must provide an empty vector. Here is a example of such
list associated to the example of XDISPLAY LIST above:

>> LEVELS = {[], [0., 1., 2.], [], [], []};

Here, we fix the isovalues for the pressure and leave them to the computer for the
other diagnostics.
Note that, if XDISPLAY LIST{i} is a vector field, the value of LEVELS{i} is not
taken into account (see the example below for further details).

• XDISPLAY METHOD (string) must be either ’SINGLE FIGURE’ or ’MULTIPLE FIGURE’.
The ’SINGLE FIGURE’ option produces a single Matlab figure window in which the
results are plotted in subplot regions, and the ’MULTIPLE FIGURE’ option produces
a Matlab figure window per 2D result that is asked for plotting.

• typeplot (string) must be either ’contour’ or ’pseudocolor’. It will specify if
the plot mode for scalar diagnostics.

Remark 8.2. At present time, the diagnostics ’P DX’, ’P DY’, ’P DX EX’ and
’P DY EX’ are automatically plotted in ’pseudocolor’ mode. We are currently
looking for a ’contour’ solution for these diagnostics.

• nbrows and nbcols (integers) are respectively the number of rows and columns that
define the mosaic of graphs in the case where the ’SINGLE FIGURE’ display method
is chosen. They are mandatory if this display method is chosen, and optional if
’MULTIPLE FIGURE’ is chosen instead.
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Example 8.3. This example is based on the Matlab script EXAMPLES/plot single nona.m:
to run it, the user must start Matlab in the root directory of NS2DDV, then run the fol-
lowing command:

>> run(’./ EXAMPLES/plot_single_nona.m’)

The idea is to study the contents of the file RESULTS/EXAMPLES/test nona/diags 5.h5.

More precisely, we want to plot the P1 mesh, the vector field u, the pressure p and its first
order derivatives. In addition, we want to focus on the isovalues p = −1, 0, . . . , 3. This is
why we can find the following lines within the script EXAMPLES/plot single nona.m:

load_paths ()

XDISPLAY_LIST = {’MESH’, ’U_VECTOR ’, ’P’, ’P_DX’, ’P_DY’};

LEVELS = {[], [1], [-1., 0., 1., 2., 3.], [], []};

namefile = ’./ RESULTS/EXAMPLES/test_nona/diags_5.h5’;

plot_from_file(namefile , XDISPLAY_LIST , LEVELS , ’SINGLE_FIGURE ’, ...

’contour ’, 3, 2);

8.3.2 Python-Matplotlib solution (no-display)

NS2DDV is supplemented with some Python scripts for generating plots from the result
files. Since some third-party Python modules are needed, the user can use the Python
installer pip to install the following packages:

• numpy,

• h5py,

• decimal,

• shutil,

• matplotlib.

Another way to ensure the dependencies above is to install Python-Anaconda distribu-
tion. More informations are available at the URL below:

http://anaconda.org/anaconda/python

In any case, the user should use Python 3.x instead of Python 2.x since there is no
insurance that Python 2.x support will be ensured in the long term.
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For using the Python-Matplotlib functions provided along with NS2DDV, the user
must implement a Python script that should start with the following lines:

#!/usr/bin/env python

# -*- coding: utf -8 -*-

import sys

sys.path.insert(0, ’PATH/TO/NS2DDV/PYTHON ’)

# If you want to plot 2D results , uncomment the following line

#from plots import *

# If you want to to encode movies , uncomment the following line

#from make_movie import *

# If you want the plot the contents of log files , uncomment the

# following line

#from plot_overtime_log import *

# ... then , type the main script below

For running such Python script under Linux-type OS or MacOS, the user must open
a terminal, then type the following command:

$ python thescript.py

Plotting diagnostics over time NS2DDV is provided with some Python functions
for exploring log files and plot the evolution in time of some quantities that are listed in
such files. In addition, it is possible to compare several simulations in such terms.

Example 8.4. In this example, we aim to plot the evolution of the kinetic energy for a
unique simulation.
To do this, we first read the corresponding log file, then extract the time grid and the
discrete kinetic energy. Finally, we set the title, the legend and the limits of the bounding
box in y direction before plotting the data and saving the figure.
It is possible to compare several simulations in terms of kinetic energy. To do this, we
extract the data, set the title, the legend etc. just as above for each log file, and we finally
use the routine plot data in a little bit different way. For the details, see the script below:

#!/usr/bin/env python

# -*- coding: utf -8 -*-

# Import the module for plotting the contents of log files

from plot_overtime_log import *
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# Read log files

namelogfile1 = ’PATH/TO/NS2DDV/RESULTS/diags1_log ’

[headers1 , data1] = read_logfile(namelogfile1)

namelogfile2 = ’PATH/TO/NS2DDV/RESULTS/diags2_log ’

[headers2 , data2] = read_logfile(namelogfile2)

# Extract time grid

time1 = extract_data(headers1 , data1 , ’TIME’)

time2 = extract_data(headers2 , data2 , ’TIME’)

# Extract the discrete kinetic energy

ekin1 = extract_data(headers1 , data1 , ’KINETIC ENERGY ’)

ekin2 = extract_data(headers2 , data2 , ’KINETIC ENERGY ’)

# Define legends

leg1 = ’Kinetic energy (run 1)’

leg2 = ’Kinetic energy (run 2)’

# Title of figure

ti = ’Kinetic energy ’

# Leave the limits in y-direction to the computer

ylim = ’default ’

# Output PNG file

outputpng1 = ’./temp1.png’

outputpng12 = ’./ temp12.png’

# Plot the kinetic energy of run 1

plot_data ([ekin1], [time1], [leg1], ti, ylim , outputpng1)

# Plot the kinetic energy for both runs

plot_data ([ekin1 , ekin2], [time1 , time2], [leg1 , leg2], ti, ylim , \

outputpng12)

Example 8.5. In a second example, we assume that we have a set of log files and we
want to compare them in the same terms in various ways. We take the same context as
in the first example above and we assume that the kinetic energy from the second log file
is much larger than the kinetic energy in the first log file. Thanks to the following script,
it is possible to plot in one line:

• The kinetic energy from the first log file,

• The kinetic energy from the second log file,

• The kinetic energy from both log files,

... and save the produced figures in 3 separated PNG files.
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#!/usr/bin/env python

# -*- coding: utf -8 -*-

# Import the module for plotting the contents of log files

from plot_overtime_log import *

# Log file names

namelogfile1 = ’PATH/TO/NS2DDV/RESULTS/diags1_log ’

namelogfile2 = ’PATH/TO/NS2DDV/RESULTS/diags2_log ’

# Define legends

leg1 = ’Kinetic energy (run 1)’

leg2 = ’Kinetic energy (run 2)’

# Title of figure

ti = ’Kinetic energy ’

# Define log file sets

logfileset1 = [namelogfile1]

logfileset2 = [namelogfile2]

logfileset12 = [namelogfile1 , namelogfile2]

# Define legend sets

legset1 = [leg1]

legset2 = [leg2]

legset12 = [leg1 , leg2]

# Output PNG files

outputpng1 = ’./temp1.png’

outputpng2 = ’./temp2.png’

outputpng12 = ’./ temp12.png’

# Plot the 3 graphs

compare_plots ([ logfileset1 , logfileset2 , logfileset12], \

[legset1 , legset2 , legset12], \

’KINETIC_ENERGY ’, ’Kinetic energy ’, \

[outputpng1 , outputpng2 , outputpng12 ])

In the following lines, we describe the prototype for the Python functions that are
involved in the examples above

[allheaders , alldata] = read_logfile(logfile)

– logfile is an input string containing the name of the log file to be read.

– allheaders is a list of strings that is no more than the name of all diagnostics
that are in the logfile.

– alldata is a list of lists, where data[i] is the list containing the time evolution
of the diagnostic with name headers[i].
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thedata = extract_data(allheaders , alldata , theheader)

– allheaders is the whole list of strings mentioned above.

– alldata is the Python list of lists containing all diagnostics mentioned above.

– theheader is the name of the diagnostic to be plotted.

– thedata is the list corresponding to the time evolution of the diagnostic with
name theheader.

plot_data(datas , times , legends , ytext , ylim , outputfile)

– datas, times, and legends must be lists with the same size.

– datas and times must be lists of lists such that datas[i] and times[i] have
same size.

– legends[i] is the legend for the curve with abscissa times[i] and ordinates
datas[i]. It should be a string.

– ytext is the name of ordinate axis. It should be a string.

– ylim is either a list of 2 floats exactly or the string ’default’. If 2 floats ymin

and ymax are given, the plotting limits in y-direction will be set to ymin and
ymax. If ’default’ is provided, Python will manage these limits according to
the contents of datas.

– outputfile is a string containing the full name of the output PNG file to be
generated (absolute path is recommended).

compare_plots(logfilesets , legendsets , field , ytext , outputfiles)

– logfilesets is a list (size N) of lists of log file names.

– legendsets is a list (size N) of lists of legends. This argument must have the
same shape as logfilesets.

– field is the name of the diagnostic to be analyzed.

– ytext is the name of ordinate axis.

– outputfiles is a list of size N of output PNG files.

In addition, a function dedicated to the NONA test case (see paragraph 5.2.7) focuses
on signal diagnostics that are listed in such log file:

compare_signals_sets(logfilesets , legendsets , fields , ytexts , \

xsignal , ysignal , xsignalalias , ysignalalias , \

outputprefixes)

79



• logfilesets is a list (size N) of lists of log file names.

• legendsets is a list (size N) of lists of legends. This argument must have the same
shape as logfilesets.

• fields is a list of diagnostics to be analyzed. Each element of this list must be ’P’,
’UX’ or ’UY’.

• ytexts is a list (size N) of strings where ytexts[i] is the name of ordinate axis
for the i-th log file set.

• xsignal and ysignal are lists of floats with respective sizes Nx and Ny.

• xsignalalias and ysignalalias are lists of strings with respective sizes Nx and
Ny.

• outputprefixes is a list (size N) of strings that contains the prefix names of output
PNG files.

For running this routine, the input arguments should satisfy some rules:

• Denoting xi =xsignal[i], yj =ysignal[j] and f = fields[k], the string f(xi,yj)
must be one of the diagnostics stored in every log file in logfilesets.

• Denoting xi = xsignalalias[i], yj = ysignalalias[j], fk = fields[k] and
pl = outputprefixes[l] for any i = 0, . . . , Nx−1, j = 0, . . . , Ny−1, l = 0, . . . , N−
1 the routine will generate the PNG file with name pl fk xi yj.png.

One can also have a look to the following example:

#!/usr/bin/env python

# -*- coding: utf -8 -*-

# Import the module for plotting the contents of log files

from plot_overtime_log import *

# Log file names

namelogfile1 = ’PATH/TO/NS2DDV/RESULTS/diags1_log ’

namelogfile2 = ’PATH/TO/NS2DDV/RESULTS/diags2_log ’

# Define legends

leg1 = ’Kinetic energy (run 1)’

leg2 = ’Kinetic energy (run 2)’

# Title of figure

ti = ’Kinetic energy ’

# Define log file sets

logfileset1 = [namelogfile1]
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logfileset2 = [namelogfile2]

logfileset12 = [namelogfile1 , namelogfile2]

# Define legend sets

legset1 = [leg1]

legset2 = [leg2]

legset12 = [leg1 , leg2]

# Prefixes for output PNG files

outputprefix1 = ’./log1’

outputprefix2 = ’./log2’

outputprefix12 = ’./ log12’

# We aim to plot ux(3,1), ux(4,1), uy(3,1) and uy(4,1)

# Specify fields in log file

fields = [’UX’, ’UY’]

# Associate them to aliases for legends

ytexts = [’ux’, ’uy’]

# x-component of the signals

xsignal = [3., 4.]

# y-component of the signals

ysignal = [1.]

# Associate them to aliases for legends

xsignalalias = [’3’, ’4’]

ysignalalias = [’1’]

compare_signals_sets ([ logfileset1 , logfileset2 , logfileset12], \

[legset1 , legset2 , legset12], \

fields , ytexts , \

xsignal , ysignal , xsignalalias , ysignalalias , \

[’./log1’, ’./log2’, ’./log12 ’])

Plotting 2D results (only for results under .h5 format) Some Python functions
are proposed for visualizing 2D results that are stored in HDF5 files.

Example 8.6. The first example is about visualizing some 2D diagnostics from a unique
HDF5 file. It is possible to plot a scalar data such as the pressure p or the components of
the velocity ux and uy with isovalues or with a color map. A typical script for this goal
is given below (see also the file EXAMPLES/plot single scalar step neumann.py):

#!/usr/bin/env python

# -*- coding: utf -8 -*-

############################ WARNING ############################

# For running this script with Linux or MacOS , open a terminal in

# the subdirectory EXAMPLES , then type the command

#
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# python plot_single_scalar_step_neumann.py

#

#################################################################

import sys

sys.path.insert(0, ’../ PYTHON ’)

# Import the module for plotting the contents of HDF5 files

from plots import *

# We aim to plot the contents of the following file:

inputh5 = ’../ RESULTS/EXAMPLES/step_neumann/diags_10.h5’

# ... and more precisely the x-component of the velocity

field = ’Velocity_x ’

# Simple contour plot

plot_contour(inputh5 , field , aliasfield=’ux’, \

outputpng=’./ ux_contour.png’, forcesave=True)

# Same with a prescribed bounding box

plot_contour(inputh5 , field , aliasfield=’ux’, \

list_bbox =[0. ,30. ,0. ,3.] , \

outputpng=’./ ux_contour_bbox.png’, forcesave=True)

# Same with prescribed isovalues

plot_contour(inputh5 , field , aliasfield=’ux’, levels =[0. ,0.5 ,1.] , \

outputpng=’./ ux_contour_levels.png’, forcesave=True)

# Simple pseudocolor plot

plot_pseudocolor(inputh5 , field , aliasfield=’ux’, \

outputpng=’./ ux_pseudocolor.png’, forcesave=True)

# Same with a prescribed bounding box

plot_pseudocolor(inputh5 , field , aliasfield=’ux’, \

list_bbox =[0. ,30. ,0. ,3.] , \

outputpng=’./ ux_pseudocolor_bbox.png’, forcesave=True)

# Same with prescribed bounds of colorbar

plot_pseudocolor(inputh5 , field , aliasfield=’ux’, list_minmax =[0. ,1.] , \

outputpng=’./ ux_pseudocolor_minmax.png’, \

forcesave=True)

We describe in the following lines the prototype of the functions that have been used
in the example above:
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plot_contour(inputh5 , field , \

aliasfield=’’, \

levels =[], \

list_bbox =[’default ’]*4, \

tuple_anchor_legend =(1.01 ,1.01) , \

tuple_inches_figsize =(12., 12.), \

outputpng=’./temp.png’, \

forcesave=False)

Mandatory arguments

– inputh5 (string) is the input HDF5 file to be studied.

– field (string) is the field within the HDF5 file to be plotted. Such field must
be written one of the scalar diagnostics in Tables 4-5.

Optional arguments

– aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly
field.

– levels (list of floats) is the list of isovalues to be plotted.
The default value (an empty list) means that a set of 10 equally distributed
isovalues will be identified accordingly with the studied data.

– list bbox is a list of 4 elements that can be either floats or ‘default’. These
4 elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will
be used for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box
will be identified thanks to the used nodes.

– tuple anchor legend is a Python tuple constituted of 2 floats that specifies the
relative position of the legend according the upper left corner of the bounding
box.
The default value is set to (1.01, 1.01).

– tuple inches figsize is a Python tuple constituted of 2 floats that are re-
spectively the width and the height of the output PNG file in inches (by default,
an inch corresponds to 80 pixels).
The default value is set to (12, 12).

– outputpng (string) is the name of the output PNG file.
The default output name is temp.png and is located in the current directory.

– forcesave is a boolean that indicates if save forcing is authorized or not in
the case where there already exists a PNG file with a name that matches with
outputpng.
The default value is False, meaning that if the output PNG already exists,
the program stops with an error message.
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plot_pseudocolor(inputh5 , field , \

aliasfield=’’, \

list_minmax =[], \

list_bbox =[’default ’]*4, \

tuple_leg_position =(0.8 ,0.45 ,0.2 ,0.3) , \

tuple_inches_figsize =(12. ,12.) , \

outputpng=’./temp.png’, \

forcesave=False)

Mandatory arguments

– inputh5 (string) is the input HDF5 file to be studied.

– field (string) is the field within the HDF5 file to be plotted. Such field must
be written one of the scalar diagnostics in Tables 4-5.

Optional arguments

– aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly
field.

– list minmax is a list of 2 floats that will be the bounds of the colormap.
Leaving the default value (empty list) means that ad hoc colormap bounds
will be used.

– list bbox is a list of 4 elements that can be either floats or ‘default’. These
4 elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will
be used for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box
will be identified thanks to the used nodes.

– tuple legend position is a Python tuple constituted of 4 floats that specifies
the relative position and size of the legend according to the upper left corner of
the bounding box with the format (x, y, width, height) in units that are relative
to the bounding box.
The default value is set to (0.8, 0.45, 0.2, 0.3).

– tuple inches figsize is a Python tuple constituted of 2 floats that are re-
spectively the width and the height of the output PNG file in inches (by default,
an inch corresponds to 80 pixels).
The default value is set to (12, 12).

– outputpng (string) is the name of the output PNG file.
The default output name is temp.png and is located in the current directory.

– forcesave is a boolean that indicates if save forcing is authorized or not in
the case where there already exists a PNG file with a name that matches with
outputpng.
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The default value is False, meaning that if the output PNG already exists,
the program stops with an error message.

Example 8.7. A second example is an extension of the previous one to the visualiza-
tion of vector fields (see the file EXAMPLES/plot single vector step neumann.py):

#!/usr/bin/env python

# -*- coding: utf -8 -*-

############################ WARNING ############################

# For running this script with Linux or MacOS , open a terminal in

# the subdirectory EXAMPLES , then type the command

#

# python plot_single_vector_step_neumann.py

#

#################################################################

import sys

sys.path.insert(0, ’../ PYTHON ’)

# Import the module for plotting the contents of HDF5 files

from plots import *

# We aim to plot the contents of the following file:

inputh5 = ’../ RESULTS/EXAMPLES/step_neumann/diags_10.h5’

# ... and more precisely the velocity vector field

field_x = ’Velocity_x ’

field_y = ’Velocity_y ’

# Simple vector plot

plot_vectorfield(inputh5 , field_x , field_y , aliasfield=’u’, \

outputpng=’./ u_vector.png’, forcesave=True)

# Same with a prescribed bounding box

plot_vectorfield(inputh5 , field_x , field_y , aliasfield=’u’, \

list_bbox =[0., 30., 0., 3], \

outputpng=’./ u_vector_bbox.png’, forcesave=True)

# Same with prescribed number of arrows

plot_vectorfield(inputh5 , field_x , field_y , aliasfield=’u’, \

narrows =400, outputpng=’./ u_vector_arrows.png’, \

forcesave=True)

The visualization function used in the example above is the following one:
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plot_vectorfield(inputh5 , field_x , field_y , \

aliasfield=’’, \

narrows =200, \

scale =2., \

width =0.01 , \

list_bbox =[’default ’]*4, \

tuple_leg_position =(0.8 ,0.45 ,0.2 ,0.3) , \

tuple_inches_figsize =(12. ,12.) , \

outputpng=’./temp.png’, \

forcesave=False)

Mandatory arguments

– inputh5 (string) is the input HDF5 file to be studied.

– field x and field y (strings) are the scalar fields within the HDF5 file to be
used as the components of the vector field to be plotted. Such fields must be
some of the scalar diagnostics in Tables 4-5 and they must be discretized on
the same grid.

Optional arguments

– aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly
(field x,field y).

– narrows (integer) gives an indication of the number of arrows to be plotted.
These arrows will be uniformly distributed on the mesh and colored by their
length.
Default value is set to 200.

– scale (float) is the number of data unit per arrow length unit. Taking a value
smaller than 1 makes the arrows longer.
Default value is set to 2.

– width (float) is the shaft width in arrow units. One can start with the value
equal to 0.005 times the length of the domain bounding box diagonal.
Default value is set to 0.01.

– list bbox is a list of 4 elements that can be either floats or ‘default’. These
4 elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will
be used for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box
will be identified thanks to the used nodes.

– tuple legend position is a Python tuple constituted of 4 floats that specifies
the relative position and size of the legend according to the upper left corner of
the bounding box with the format (x, y, width, height) in units that are relative
to the bounding box.
The default value is set to (0.8, 0.45, 0.2, 0.3).
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– tuple inches figsize is a Python tuple constituted of 2 floats that are re-
spectively the width and the height of the output PNG file in inches (by default,
an inch corresponds to 80 pixels).
The default value is set to (12, 12).

– outputpng (string) is the name of the output PNG file.
The default output name is temp.png and is located in the current directory.

– forcesave is a boolean that indicates if save forcing is authorized or not in
the case where there already exists a PNG file with a name that matches with
outputpng.
The default value is False, meaning that if the output PNG already exists,
the program stops with an error message.

Note that, for using plot contour, it can be useful to prescribe a specific list of iso-
values. To build such list, one can extract the minimal and maximal values of the studied
field, then build a list of values from these bounds. To do this, the user can call the
following function:

list_minmax = extract_minmax(inputh5 , field)

where inputh5 (string) is the HDF5 field where the data is stored, field (string) is the
2D scalar field to be studied, and the output list minmax is a list constituted of 2 floats
that are respectively the minimal and maximal bounds of the studied field.
Note that such function is also useful for prescribing the colormap bound in a use of the
function plot pseudocolor.

It is possible to extend the jobs above to a HDF5 file set:

Example 8.8. The following example is about visualizing some 2D diagnostics from a
set of HDF5 files instead of a single file. A typical script for this goal is given below and
is a part of EXAMPLES/movie nona.py:

#!/usr/bin/env python

# -*- coding: utf -8 -*-

############################ WARNING ############################

# For running this script with Linux or MacOS , open a terminal in

# the subdirectory EXAMPLES , then type the command

#

# python movie_nona.py

#

#################################################################

import sys

sys.path.insert(0, ’../ PYTHON ’)

# Import the module for plotting the contents of HDF5 files
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from plots import *

# The input files are RESULTS/EXAMPLES/test_nona/diags_i.h5 with

# i=0,...,12

dir_inputh5 = ’../ RESULTS/EXAMPLES/test_nona ’

istart = 0

iend = 12

# We aim to visualize the dynamics of

# - ux with contours

# - uy with contours

# - p with pseudocolor

# - u with vectors

# Warning: the size of output PNGs should be prescribed

figsize = (19.2 ,12.)

# Build the list of input files

inputh5set = []

for i in range(istart , iend +1):

inputh5set.append(dir_inputh5+’/diags_ ’+str(i)+’.h5’)

# Plot the contour of ux

# (Default: 10 isovalues that do not change with time)

plot_contour_set(inputh5set , ’Velocity_x ’, aliasfield=’ux’, \

tuple_inches_figsize=figsize , outputdir=’./tmp’, \

forcesave=True)

# Plot the contour of uy

# (Default: 10 isovalues that do not change with time)

plot_contour_set(inputh5set , ’Velocity_y ’, aliasfield=’uy’, \

tuple_inches_figsize=figsize , outputdir=’./tmp’, \

forcesave=True)

# Plot the pseudocolor of p

# (Default: bounds of colormap do not change with time)

plot_contour_set(inputh5set , ’Pressure ’, aliasfield=’p’, \

tuple_inches_figsize=figsize , outputdir=’./tmp’, \

forcesave=True)

# Plot the vector field u

# (Default: 200 arrows)

plot_vectorfield_set(inputh5set , ’Velocity_x ’, ’Velocity_y ’, \

aliasfield=’u’, tuple_inches_figsize=figsize , \

outputdir=’./tmp’, forcesave=True)

We describe in the following lines the prototype of the functions that have been used
in the example above:
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plot_contour_set(inputh5set , field , \

aliasfield=’’, \

nlevels =10, \

fix_isovalues=True , \

list_bbox =[’default ’]*4, \

tuple_anchor_legend =(1.01 ,1.01) , \

tuple_inches_figsize =(12., 12.), \

outputdir=’.’, \

forcesave=False)

Mandatory arguments

– inputh5set is a list that contains the name of all HDF5 files to be studied.

– field (string) is the field within both HDF5 files to be plotted. Such field
must be written one of the scalar diagnostics in Tables 4-5.

Optional arguments

– aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly
field.

– nlevels (integer) is the number of isovalues to be plotted on each figure.
The default value is set to 10.

– fix isovalues (boolean) is for considering the same isovalues for the whole
file set or not.
The default value is True, meaning that the isovalues are not modified over
the while file set.

– list bbox is a list of 4 elements that can be either floats or ‘default’. These
4 elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will
be used for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box
will be identified thanks to the used nodes.

– tuple anchor legend is a Python tuple constituted of 2 floats that specifies the
relative position of the legend according the upper left corner of the bounding
box.
The default value is set to (1.01, 1.01).

– tuple inches figsize is a Python tuple constituted of 2 floats that are re-
spectively the width and the height of the output PNG file in inches (by default,
an inch corresponds to 80 pixels).
The default value is set to (12, 12).

– outputdir is the output directory where the produced PNG files will be stored.
Each PNG file will be given the name nameh5 aliasfield.png where nameh5

is the name of an element of inputh5set without its .h5 extension.
The default directory is the current directory.
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– forcesave is a boolean that indicates if save forcing is authorized or not in
the case where there already exists a PNG file with a name that matches with
outputpng.
The default value is False, meaning that if the output PNG already exists,
the program stops with an error message.

plot_pseudocolor_set(inputh5set , field , \

aliasfield=’’, \

list_minmax =[], \

list_bbox =[’default ’]*4, \

tuple_leg_position =(0.8 ,0.45 ,0.2 ,0.3) , \

tuple_inches_figsize =(12., 12.), \

outputdir=’.’, \

forcesave=False)

Mandatory arguments

– inputh5set is a list that contains the name of all HDF5 files to be studied.

– field (string) is the field within the HDF5 file to be plotted. Such field must
be written one of the scalar diagnostics in Tables 4-5.

Optional arguments

– aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly
field.

– list minmax is a list of 2 floats that will be the bounds of the colormap.
Leaving the default value (empty list) means that ad hoc colormap bounds
will be used.

– list bbox is a list of 4 elements that can be either floats or ‘default’. These
4 elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will
be used for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box
will be identified thanks to the used nodes.

– tuple legend position is a Python tuple constituted of 4 floats that specifies
the relative position and size of the legend according to the upper left corner of
the bounding box with the format (x, y, width, height) in units that are relative
to the bounding box.
The default value is set to (0.8, 0.45, 0.2, 0.3).

– tuple inches figsize is a Python tuple constituted of 2 floats that are re-
spectively the width and the height of the output PNG file in inches (by default,
an inch corresponds to 80 pixels).
The default value is set to (12, 12).
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– outputdir is the output directory where the produced PNG files will be stored.
Each PNG file will be given the name nameh5 aliasfield.png where nameh5

is the name of an element of inputh5set without its .h5 extension.
The default directory is the current directory.

– forcesave is a boolean that indicates if save forcing is authorized or not in
the case where there already exists a PNG file with a name that matches with
outputpng.
The default value is False, meaning that if the output PNG already exists,
the program stops with an error message.

plot_vectorfield_set(inputh5set , field_x , field_y , \

aliasfield=’’, \

narrows =200, \

scale =2., \

width =0.01 , \

list_bbox =[’default ’]*4, \

tuple_leg_position =(0.8 ,0.45 ,0.2 ,0.3) , \

tuple_inches_figsize =(12. ,12.) , \

outputdir=’.’, \

forcesave=False)

Mandatory arguments

– inputh5set is a list that contains the name of all HDF5 files to be studied.
item field x and field y (strings) are the scalar fields within the HDF5 file
to be used as the components of the vector field to be plotted. Such fields must
be some of the scalar diagnostics in Tables 4-5 and they must be discretized
on the same grid.

Optional arguments

– aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly
(field x,field y).

– narrows (integer) gives an indication of the number of arrows to be plotted.
These arrows will be uniformly distributed on the mesh and colored by their
length.
Default value is set to 200.

– scale (float) is the number of data unit per arrow length unit. Taking a value
smaller than 1 makes the arrows longer.
Default value is set to 2.

– width (float) is the shaft width in arrow units. One can start with the value
equal to 0.005 times the length of the domain bounding box diagonal.
Default value is set to 0.01.
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– list bbox is a list of 4 elements that can be either floats or ‘default’. These
4 elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will
be used for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box
will be identified thanks to the used nodes.

– tuple legend position is a Python tuple constituted of 4 floats that specifies
the relative position and size of the legend according to the upper left corner of
the bounding box with the format (x, y, width, height) in units that are relative
to the bounding box.
The default value is set to (0.8, 0.45, 0.2, 0.3).

– tuple inches figsize is a Python tuple constituted of 2 floats that are re-
spectively the width and the height of the output PNG file in inches (by default,
an inch corresponds to 80 pixels).
The default value is set to (12, 12).

– outputdir is the output directory where the produced PNG files will be stored.
Each PNG file will be given the name nameh5 aliasfield.png where nameh5

is the name of an element of inputh5set without its .h5 extension.
The default directory is the current directory.

– forcesave is a boolean that indicates if save forcing is authorized or not in
the case where there already exists a PNG file with a name that matches with
outputpng.
The default value is False, meaning that if the output PNG already exists,
the program stops with an error message.

In addition of all these functions, one can use the following function to plot a trian-
gulation within a HDF5 mesh file:

plot_mesh(meshh5 , method , \

aliasfield=’’, \

list_bbox =[’default ’]*4, \

tuple_inches_figsize =(12. ,12.) , \

outputpng=’./temp.png’, \

forcesave=False)

Mandatory arguments

• meshh5 (string) is the input HDF5 mesh file to be studied.

• method (string) is the type of Finite Element mesh to be plotted. At present time,
it must be one of the values listed in Table 4.

Optional arguments

• aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly field.
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• list bbox is a list of 4 elements that can be either floats or ‘default’. These 4
elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will be used
for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box will
be identified thanks to the used nodes.

• tuple inches figsize is a Python tuple constituted of 2 floats that are respectively
the width and the height of the output PNG file in inches (by default, an inch
corresponds to 80 pixels).
The default value is set to (12, 12).

• outputpng (string) is the name of the output PNG file.
The default output name is temp.png and is located in the current directory.

• forcesave is a boolean that indicates if save forcing is authorized or not in the case
where there already exists a PNG file with a name that matches with outputpng.
The default value is False, meaning that if the output PNG already exists, the
program stops with an error message.

Finally, a function is dedicated to the comparison of the isolines of a specific 2D scalar
diagnostic from 2 distinct files. This can be done with the following function:

plot_two_contour(inputh5 , field , list_alias_diff , \

aliasfield=’’, \

levels =[], \

list_bbox =[’default ’]*4, \

tuple_anchor_legend =(1.01 ,1.01) , \

tuple_inches_figsize =(12. ,12.) , \

outputpng=’./temp.png’, \

forcesave=False)

Mandatory arguments

• inputh5 (string) is a list of 2 HDF5 file names. The data from to inputh5[0] will
be plotted with solid lines and the data from to inputh5[1] will be plotted with
dashed lines.

• field (string) is the field within both HDF5 files to be plotted. Such field must be
written one of the scalar diagnostics in Tables 4-5.

• list alias diff is a list of 2 strings that will be used as legends. Taking 2 different
strings is recommended.

Optional arguments

• aliasfield (string) is the field name as it will be used as plot title and legend.
Leaving the default value (empty string) means that this alias will be exactly field.
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• levels (list of floats) is the list of isovalues to be plotted.
The default value (an empty list) means that a set of 10 equally distributed isovalues
will be identified accordingly with the studied data.

• list bbox is a list of 4 elements that can be either floats or ‘default’. These 4
elements stands for xmin,bb, xmax,bb, ymin,bb and ymax,bb respectively which will be used
for the visualization bounding box [xmin,bb, xmax,bb]× [ymin,bb, ymax,bb].
Any ‘default’ value means that the corresponding part of the bounding box will
be identified thanks to the used nodes.

• tuple anchor legend is a Python tuple constituted of 2 floats that specifies the
relative position of the legend according the upper left corner of the bounding box.
The default value is set to (1.01, 1.01).

• tuple inches figsize is a Python tuple constituted of 2 floats that are respectively
the width and the height of the output PNG file in inches (by default, an inch
corresponds to 80 pixels).
The default value is set to (12, 12).

• outputpng (string) is the name of the output PNG file.
The default output name is temp.png and is located in the current directory.

• forcesave is a boolean that indicates if save forcing is authorized or not in the case
where there already exists a PNG file with a name that matches with outputpng.
The default value is False, meaning that if the output PNG already exists, the
program stops with an error message.

An application example can be found in the file EXAMPLES/plot two scalar step.py:

#!/usr/bin/env python

# -*- coding: utf -8 -*-

############################ WARNING ############################

# For running this script with Linux or MacOS , open a terminal in

# the subdirectory EXAMPLES , then type the command

#

# python plot_two_scalar_step.py

#

#################################################################

import sys

sys.path.insert(0, ’../ PYTHON ’)

# Import the module for plotting the contents of HDF5 files

from plots import *

# We aim to compare the contents of the following file:
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inputh5 = [’../ RESULTS/EXAMPLES/step_neumann/diags_10.h5’, \

’../ RESULTS/EXAMPLES/step_natural/diags_10.h5’]

# ... and more precisely in terms of x-component of the velocity

field = ’Velocity_x ’

# The difference between the input file lies in the use of

# different boundary conditions

list_alias_diff = [’Neumann BC’, ’Natural BC’]

# Simple comparating contour plot

plot_two_contour(inputh5 , field , list_alias_diff , \

aliasfield=’ux’, outputpng=’./ ux_compare.png’, forcesave=True)

# Same with a prescribed bounding box

plot_two_contour(inputh5 , field , list_alias_diff , \

aliasfield=’ux’, list_bbox =[0., 30., 0., 3], \

outputpng=’./ ux_compare_bbox.png’, forcesave=True)

# Same with prescribed isovalues

plot_two_contour(inputh5 , field , list_alias_diff , \

aliasfield=’ux’, levels =[0., 0.5, 1., 1.5], \

outputpng=’./ ux_compare_levels.png’, forcesave=True)

8.4 Visualize and save an animated result

It is possible to generate movie representing the time evolution of a simulation. Several
solutions have been developed to reach this goal.

8.4.1 Matlab solution

NS2DDV embeds a Matlab solution for visualizing an animated result without saving it.
This job can be done with the routine movie from file that can handle .mat or .h5 file
sets.

This routine almost works in the same way as plot from file (see paragraph 8.3.1).
Indeed, the user must move to the root path of NS2DDV, then type the following com-
mands:

>> load_paths ();

>> movie_from_file(inputs , XDISPLAY_LIST , LEVELS , XDISPLAY_METHOD , ...

typeplot , nbrows , nbcols );

The arguments of the routine movie from file are the following:

• inputs is a cell array that can be of size 1, 3 or 4:
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2D diagnostic
Visualization Visualization from file with

in-situ Matlab Python-Matplotlib

P1 mesh ’MESH’ ’P1’

P2 or P1,b subtriangulation
(according to disc. of u)

’SUBTRI U’ ’P2’ or ’P1B’

Density
ρ (scalar)

’RHO’ ’Density’

Velocity
u (vector)

’U VECTOR’
’Velocity x’

’Velocity y’

x-part of velocity
ux (scalar)

’UX’ ’Velocity x’

y-part of velocity
uy (scalar)

’UY’ ’Velocity y’

∂xux (scalar) ’DX UX’ ’Velocity x dx’

∂yux (scalar) ’DY UX’ ’Velocity x dy’

∂xuy (scalar) ’DX UY’ ’Velocity y dx’

∂yuy (scalar) ’DY UY’ ’Velocity y dy’

Shear rate
∂yux + ∂xuy (scalar)

’SHEAR’ ’Shear rate’

Velocity magnitude
|u|2 (scalar)

’U MODULE’ ’Velocity magnitude’

Vorticity
ω (scalar)

’VORTIC’ ’Vorticity’

Velocity streamlines
ψ (scalar)

’STREAM’ ’Streamlines’

Pressure
p (scalar)

’P’ ’Pressure’

Pressure gradient
∇p (vector)

’GRAD P’
Pressure gradient x

Pressure gradient y

∂xp (scalar) ’P DX’ Pressure gradient x

∂yp (scalar) ’P DY’ Pressure gradient y

Auxiliary velocity
w (vector)

’W VECTOR’
’wx’

’wy’

x-part of auxiliary
velocity wx (scalar)

’WX’ ’wx’

y-part of auxiliary
velocity wy (scalar)

’WY’ ’wy’

Auxiliary pressure
r (scalar)

’R’ ’r’

Table 4: List of 2D diagnostics to be called for visualization
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2D diagnostic
Visualization Visualization from file with

in-situ Matlab Python-Matplotlib

Exact density
ρex (scalar)

’RHO EX’ ’Density exact’

Exact velocity
uex (vector)

’U VECTOR EX’
’Velocity x exact’

’Velocity y exact’

x-part of exact velocity
ux,ex (scalar)

’UX EX’ ’Velocity x exact’

y-part of exact velocity
uy,ex (scalar)

’UY EX’ ’Velocity y exact’

∂xux,ex (scalar) ’DX UX EX’ ’Velocity x dx exact’

∂yux,ex (scalar) ’DY UX EX’ ’Velocity x dy exact’

∂xuy,ex (scalar) ’DX UY EX’ ’Velocity y dx exact’

∂yuy,ex (scalar) ’DY UY EX’ ’Velocity y dy exact’

Exact shear rate
∂yux,ex + ∂xuy,ex (scalar)

’SHEAR EX’ ’Shear rate exact’

Exact velocity magnitude
|uex|2 (scalar)

’U MODULE EX’ ’Velocity magnitude exact’

Exact vorticity
ωex (scalar)

’VORTIC EX’ ’Vorticity exact’

Exact velocity streamlines
ψ (scalar)

’STREAM EX’ ’Streamlines exact’

Exact pressure
pex (scalar)

’P EX’ ’Pressure exact’

Exact pressure gradient
∇pex (vector)

’GRAD P EX’
Pressure gradient x exact

Pressure gradient y exact

∂xpex (scalar) ’P DX EX’ Pressure gradient x exact

∂ypex (scalar) ’P DY EX’ Pressure gradient y exact

Table 5: List of specific 2D diagnostics to be called for visualization for manufactured
test cases (EXAC, EXACNEU)
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– Size ≥ 1: the first component is a string pattern like prefix *.h5. In such
case, the code will look for all the files that match with such pattern.

– Size ≥ 3: the second component is a starting index istart and the third one is
an ending index iend. In such case, the code will look for all the files with name
prefix istart.h5, .... , prefix iend.h5.

– Size = 4: the fourth argument is a step istep. In such case, the code will
look for all the files with name prefix istart.h5, prefix istart + istep.h5, .... ,
prefix iend.h5.

• XDISPLAY LIST is a cell line where each cell is a diagnostic to be plotted (see Tables
4-5). Here is a example of such list:

>> XDISPLAY_LIST = {’MESH’, ’P’, ’UX’, ’UY’, ’U_VECTOR ’};

• LEVELS is a cell line that contains the isovalues for each scalar diagnostic. This
cell line must have the same size as XDISPLAY LIST. If the user wants to fix the
isovalues, (s)he must provide an line vector containing the required isovalues. In
the other cases, the user must provide an empty vector. Here is a example of such
list associated to the example of XDISPLAY LIST above:

>> LEVELS = {[], [0., 1., 2.], [], [], []};

Here, we fix the isovalues for the pressure and leave them to the computer for the
other diagnostics.
Note that, if XDISPLAY LIST{i} is a vector field, the value of LEVELS{i} is not
taken into account (see the example below for further details).

• XDISPLAY METHOD (string) must be either ’SINGLE FIGURE’ or ’MULTIPLE FIGURE’.
The ’SINGLE FIGURE’ option produces a single Matlab figure window in which the
results are plotted in subplot regions, and the ’MULTIPLE FIGURE’ option produces
a Matlab figure window per 2D result that is asked for plotting.

• typeplot (string) must be either ’contour’ or ’pseudocolor’. It will specify if
the plot mode for scalar diagnostics.

Remark 8.9. At present time, the diagnostics ’P DX’, ’P DY’, ’P DX EX’ and
’P DY EX’ are automatically plotted in ’pseudocolor’ mode. We are currently
looking for a ’contour’ solution for these diagnostics.

• nbrows and nbcols (integers) are respectively the number of rows and columns that
define the mosaic of graphs in the case where the ’SINGLE FIGURE’ display method
is chosen. They are mandatory if this display method is chosen, and optional if
’MULTIPLE FIGURE’ is chosen instead.
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Example 8.10. This example is based on the Matlab script EXAMPLES/movie nona.m:
to run it, the user must start Matlab in the root directory of NS2DDV, then run the
following command:

>> run(’./ EXAMPLES/movie_nona.m’)

The idea is to study the time dynamics in the numerical results from the “ready-to-
use” example test nona.m (see Section 3.4.5). More precisely, we want to plot the P1

mesh, and the dynamics of the vector field u, the pressure p and its first order derivatives.
In addition, we want to focus on the isovalues p = −1, 0, . . . , 3. This is why we can find
the following lines within the script EXAMPLES/visu nona.m:

load_paths ()

XDISPLAY_LIST = {’MESH’, ’U_VECTOR ’, ’P’, ’P_DX’, ’P_DY’};

LEVELS = {[], [1], [-1., 0., 1., 2., 3.], [], []};

inputs = {’./ RESULTS/EXAMPLES/test_nona/diags_ *.h5’};

% Equivalent definitions

% inputs = {’./ RESULTS/EXAMPLES/test_nona/diags_ *.h5’, 0, 12};

% inputs = {’./ RESULTS/EXAMPLES/test_nona/diags_ *.h5’, 0, 12, 1};

movie_from_file(inputs , XDISPLAY_LIST , LEVELS , ’SINGLE_FIGURE ’, ...

’contour ’, 3, 2);

8.4.2 Python-FFmpeg solution (no-display)

Assuming that a set of frames under PNG format have been generated (see Section 8.3),
it is possible to convert these files into a MPEG movie. To do this, the software FFmeg
and a Python distribution are required. See below for complementary details:

• FFmpeg website: https://www.ffmpeg.org/

The advantage of using FFmpeg to convert a set of PNG files into a video is that it
can be run in ”no-display” mode and, consequently, is compatible with batch tools such
as Slurm, Torque...

NS2DDV has been supplemented with some Python routines for using FFmpeg in a
more ”user-friendly” way. These routines are gathered in the file make movie.py. The fol-
lowing script gives an idea of using it (see also the Python file EXAMPLES/movie nona.py:

#!/usr/bin/env python
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# -*- coding: utf -8 -*-

############################ WARNING ############################

# For running this script with Linux or MacOS , open a terminal in

# the subdirectory EXAMPLES , then type the command

#

# python movie_nona.py

#

#################################################################

import sys

sys.path.insert(0, ’../ PYTHON ’)

# Import the module for plotting the contents of HDF5 files

from plots import *

# Import the module for encoding movies

from make_movie import *

# The input files are RESULTS/EXAMPLES/test_nona/diags_i.h5 with

# i=0,...,12

dir_inputh5 = ’../ RESULTS/EXAMPLES/test_nona ’

istart = 0

iend = 12

# We aim to encode the dynamics of

# - ux with contours

# - uy with contours

# - p with pseudocolor

# - u with vectors

# Warning: the size of output PNGs should be prescribed

figsize = (19.2 ,12.)

# Build the list of input files

inputh5set = []

for i in range(istart , iend +1):

inputh5set.append(dir_inputh5+’/diags_ ’+str(i)+’.h5’)

# Plot the contour of ux

# (Default: 10 isovalues that do not change with time)

plot_contour_set(inputh5set , ’Velocity_x ’, aliasfield=’ux’, \

tuple_inches_figsize=figsize , \

outputdir=’./tmp’, forcesave=True)

# Plot the contour of uy

# (Default: 10 isovalues that do not change with time)

plot_contour_set(inputh5set , ’Velocity_y ’, aliasfield=’uy’, \

tuple_inches_figsize=figsize , \
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outputdir=’./tmp’, forcesave=True)

# Plot the pseudocolor of p

# (Default: bounds of colormap do not change with time)

plot_contour_set(inputh5set , ’Pressure ’, aliasfield=’p’, \

tuple_inches_figsize=figsize , \

outputdir=’./tmp’, forcesave=True)

# Plot the vector field u (Default: 200 arrows)

plot_vectorfield_set(inputh5set , ’Velocity_x ’, ’Velocity_y ’, \

aliasfield=’u’, tuple_inches_figsize=figsize , \

outputdir=’./tmp’, forcesave=True)

# For each set {diags_i_ux.png , diags_i_uy.png , diags_i_p.png ,

# diags_i_u.png}, build a 2x2 mosaic named diags_i.png and

# prepare a list of PNGs for video encoding

# Warning: i = 000, 001, 002, ... 012

list_encoding = []

ndigits = int(numpy.ceil(numpy.log10(iend )+1))

for i in range(istart , iend +1):

inputpngs = [’./tmp/diags_ ’+str(i).rjust(ndigits , ’0’)+’_ux.png’, \

’./tmp/diags_ ’+str(i). rjust(ndigits , ’0’)+’_uy.png’, \

’./tmp/diags_ ’+str(i). rjust(ndigits , ’0’)+’_p.png’, \

’./tmp/diags_ ’+str(i). rjust(ndigits , ’0’)+’_u.png’]

outputpng = ’./tmp/diags_ ’+str(i).rjust(ndigits , ’0’)+’.png’

build_mosaic(inputpngs , 2, 2, outputpng)

list_encoding.append(outputpng)

# Encode the video

encode_video(list_encoding , ’./tmp’, ’nona.mp4’, forcesave=True)

# Remove the directory ./tmp and its contents

shutil.rmtree(’./tmp’)

print(’Directory ./tmp deleted ’)

The most important one is dedicated to the conversion PNG→MP4:

encode_video(inputpngs , tmppath , outputmovie , forcesave=False)

Mandatory arguments

• inputpngs is an ordered list of PNG file names.

• tmppath (string) is the path to a temporary directory that will be used for the
conversion. Note that if this directory already exists, it should not contain any
PNG file. If it does not exist, it will be created at the beginning of the job and
deleted at the end of the job.

• outputmovie (string) is the name of the output movie file. The extension of such
file should be .mp4.
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Optional arguments

• forcesave is a boolean that indicates if save forcing is authorized or not in the case
where there already exists a PNG file with a name that matches with outputpng.
The default value is False, meaning that if the output PNG already exists, the
program stops with an error message.

If ImageMagick is installed, it is possible to use the command montage to build a
mosaic of graphs from a set of PNG files. For this purpose, one can use the following
routine that is a part of make movie.py:

build_mosaic(inputpngs , nrows , ncols , outputpng)

• inputpngs is an ordered list of PNG file names.

• nrows and ncols (integers) are the number of rows and columns in the expected
mosaic. Note that the product nrows×ncols must larger or equal to the size of the
list inputpngs.

• outputpng (string) is the name of the output PNG file.

More informations about ImageMagick are available at the following link:

• ImageMagick website: http://imagemagick.org/script/index.php

• montage command documentation: http://www.imagemagick.org/Usage/montage/

8.5 Convergence and stability analysis

Several test cases are based on analytical solutions and ad hoc manufactured source terms
(see test cases EXAC in paragraphes 5.2.3 and 5.1.3, and EXACNEU in paragraph 5.2.4
and 5.1.4). If one these test cases in considered during the execution of the routine
generate setup file.m, it is possible to run a convergence analysis with mutiple time
and/or space discretizations instead of a single time-space discretization. Such framework
is also adapted for testing a single time-space discretization against multiple values of the
Reynolds number Re. More precisely, assuming that the user chose the test case EXAC or
EXACNEU during the execution of generate setup file, (s)he will be asked the following
question:

Do you want to run a convergence or stability analysis ?

’IN_SPACE ’ Convergence analysis according to the space step only

’IN_TIME ’ Convergence analysis according to the time step only

’IN_SPACETIME ’ Convergence analysis according to both space and time

steps

’IN_REYNOLDS ’ Stability analysis according to the Reynolds number

’NONE’ No stability/convergence analysis , run a simple

simulation

Your choice :
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According to the answer, the generated setup file is configured in a slightly different
way and PARAMETERS.CV STUDY is given a value.

8.5.1 Convergence with space mesh refinement

In this paragraph, it is assumed that the user chose the answer ’IN SPACE’ to the question
above. Hence, (s)he will find in the non-modifiable part of the setup file the following line:

PARAMETERS.CV_STUDY = ’IN_SPACE ’;

The goal is to study the error between the exact solution and the approximation
computed by NS2DDV when the space mesh is refined and the time mesh is common to
all runs. More precisely, assuming that the space meshes M1, . . . ,MK are considered, and
denoting with hk,min and hk,max the minimal and maximal edge length within the mesh
Mk, the time step bound that is used for all runs is the following:

∆t = min
k= 1,...,K

(
Cmh

αm
k,min + CMh

αM
k,max

)
,

where Cm, CM , αm, αM can be specified by the user in the setup file as follows:

% Value of alphamax

PARAMETERS.FE.ALPHAMAX_STEP_TIME = αM ;

% Value of alphamin

PARAMETERS.FE.ALPHAMIN_STEP_TIME = αm;

% Value of Cmax

PARAMETERS.FE.CMAX_STEP_TIME = CM ;

% Value of Cmin

PARAMETERS.FE.CMIN_STEP_TIME = Cm;

Note that, as it is explained at the beginning of Section 6, such ∆t defines a time mesh
(t0, . . . , tN) that is all common to all simulations.

By default, αm = αM = 1.5 for any test case associated to the NS model or to the
NSDV model with Strang splitting (see paragraph 6.1.2), and αm = αM = 1 is set by
default for any test case associated to the NSDV model with Lax splitting (see paragraph
6.1.1). The default values of Cm and CM are respectively 1 and 0.

For characterizing the space mesh family (M1, . . . ,MK), the user must proceed as
follows:

• ’NS2DDV’ mesh generation method (see paragraph 4.2):

– ’RECTANGLE’ geometry: each mesh Mk is characterized by the numbers of
edges in x and y directions denoted with ne,x,k and ne,y,k respectively. These
integer values can be input in the setup file as follows:
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% Number of edges on North and South bounds

% WARNING: it must be a multiple of 2

% {value 1, value 2, ...} set of values for NBSEG_X for running

% the convergence analysis

PARAMETERS.MESH.NBSEG_X = {ne,x,1, ..., ne,x,K };

% Number of edges on West and East bounds

% WARNING: it must be a multiple of 2

% {value 1, value 2, ...} set of values for NBSEG_Y for running

% the convergence analysis

PARAMETERS.MESH.NBSEG_Y = {ne,y,1, ..., ne,y,K };

– ’DIHEDRON’ geometry: each mesh Mk is characterized by its number nn,y,BL,k
of nodes in y-direction in the boundary layer, its number ne,y,OBL,k of edges
in y-direction outside of the boundary layer, and its number ne,x,BU,k of edges
by unit in x-direction. All meshes share the same height of boundary layer
hBL and the same geometric reason α that describes the repartition of nodes
in y-direction in the boundary layer. Concretely, the user should modify the
setup file as follows for characterizing the mesh family (M1, . . . ,MK):

% Height of the boundary layer

PARAMETERS.MESH.HEIGHT_BL = hBL;

% Number of edges by segment of length 1 in x-direction

% (even values recommended)

PARAMETERS.MESH.NBSEG_PERUNIT_X = {ne,x,BU,1, ..., ne,x,BU,K };

% Number of nodesspace in the boundary layer in y-direction

PARAMETERS.MESH.NBNODES_INBL_Y = {nn,y,BL,1, ..., nn,y,BL,K };

% Geometric reason of nodes repartition in the boundary layer

% in y-direction

PARAMETERS.MESH.PROG_GEOM_BL_Y = α;
% Number of edges out of the boundary layer in y-direction

PARAMETERS.MESH.NBSEG_OUTBL_Y = {ne,y,OBL,1, ..., ne,y,OBL,K };

• ’PDET’ mesh generation method (see paragraph 4.2): each space mesh Mk is gen-
erated by Matlab Partial Differential Equation Toolbox thanks to the characteristic
edge length h0,k. Hence, to characterize the full mesh list (M1, . . . ,MK), the user
should modify the setup file as follows:

% Characteristic edge length in the mesh

% {value 1, value 2, ...} set of values for H0 for running

% the convergence analysis

PARAMETERS.MESH.H0 = {h0,1, ..., h0,K };

• ’FROM FILE’ mesh generation method (see paragraph 4.2): this mesh generation
solution is not compatible with any convergence or stability analysis approach at
present time.

By default, the dynamics of each simulation is not saved as .mat/.h5 files but only
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the log file. More precisely, if we have the following lines in the setup file

PARAMETERS.MODEL = ’themodel ’;

PARAMETERS.TESTCASE = ’thetestcase ’;

PARAMETERS.OUTPUT.DIRECTORY_NAME = ’thedirectory ’;

the simulation associated with the space mesh Mk will produce a log file in the sub-
directory thedirectory/themodel thetestcase k.

Once all simulations are finished, NS2DDV analyses the log files that have been pro-
duced by each of these simulations and focuses on some specific diagnostics including the
following errors:

• Error on the velocity:

eu,∆t,Mk
= max

n= 0,...,N
‖u∆t,Mk

(tn, ·)− uex(t
n, ·)‖(L2(Ω))2 ,

• Error on the pressure:

ep,∆t,Mk
= max

n= 0,...,N
‖p∆t,Mk

(tn, ·)− pex(tn, ·)‖L2(Ω) ,

• Error on the density (only for NSDV model):

eρ,∆t,Mk
= max

n= 0,...,N
‖ρ∆t,Mk

(tn, ·)− ρex(tn, ·)‖L2(Ω) .

The very last part of the convergence analysis consists in plotting and saving the errors
curves hk,max 7→ eu,∆t,Mk

, hk,max 7→ ep,∆t,Mk
and hk,max 7→ eρ,∆t,Mk

in EPS file format for
summarizing the convergence of the involved numerical methods as the space mesh is
refined.

8.5.2 Convergence with time mesh refinement

In this paragraph, it is assumed that the user chose the answer ’IN TIME’ to the question
in the introduction of Section 8.5. Hence, (s)he will find in the non-modifiable part of the
setup file the following line:

PARAMETERS.CV_STUDY = ’IN_TIME ’;

The goal is to study the error between the exact solution and the approximation
computed by NS2DDV when the time mesh is refined and the space mesh is common to
all runs. More precisely, considering a mesh M where the maximal length of an edge is
denoted with hmax, the goal is to run NS2DDV with the space mesh M and various time
steps ∆tk (k = 1, . . . , K), where

∆tk = Ck h
α
max ,
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where α is common to all simulations and C1, . . . , CK can be set by the user in the setup
file as follows:

% Time step for solving Stokes equation

% WARNING : this time step is of the form C*hmax^alpha

% where hmax is the max length of an edge for the considered space mesh

% Value of alpha

PARAMETERS.FE.ALPHA_STEP_TIME = α;
% Values of C (provide several values for running a convergence

% analysis in dt)

PARAMETERS.FE.C_STEP_TIME = {C1, ..., CK };

Hence, each time step bound ∆tk is associated to a time mesh (t0k, . . . , t
Nk
k ) as it is

explained in the first lines of Section 6.

As for convergence in space mesh refinement, the dynamics of each simulation is not
saved as .mat/.h5 files but only the log file in the present casen and, assuming that the
following lines are in the setup file

PARAMETERS.MODEL = ’themodel ’;

PARAMETERS.TESTCASE = ’thetestcase ’;

PARAMETERS.OUTPUT.DIRECTORY_NAME = ’thedirectory ’;

the simulation associated with the time step ∆tk will produce a log file in the subdi-
rectory thedirectory/themodel thetestcase k.

Once all simulations are finished, NS2DDV analyses the log files that have been pro-
duced by each of these simulations and focuses on some specific diagnostics including the
following errors:

• Error on the velocity:

eu,∆tk,M = max
nk = 0,...,Nk

‖u∆tk,M(tnkk , ·)− uex(t
nk
k , ·)‖(L2(Ω))2 ,

• Error on the pressure:

ep,∆tk,M = max
nk = 0,...,Nk

‖p∆tk,M(tnkk , ·)− pex(t
nk
k , ·)‖L2(Ω) ,

• Error on the density (only for NSDV model):

eρ,∆tk,M = max
nk = 0,...,Nk

‖ρ∆tk,M(tnkk , ·)− ρex(t
nk
k , ·)‖(L2(Ω))2 .

The very last part of the convergence analysis consists in plotting and saving the errors
curves ∆tk 7→ eu,∆tk,M, ∆tk 7→ ep,∆tk,M and ∆tk 7→ eρ,∆tk,M in EPS file format for summa-
rizing the convergence of the involved numerical methods as the time mesh is refined.
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8.5.3 Convergence with space-time mesh refinement

In this paragraph, it is assumed that the user chose the answer ’IN SPACETIME’ to the
question in the introduction of Section 8.5. Hence, (s)he will find in the non-modifiable
part of the setup file the following line:

PARAMETERS.CV_STUDY = ’IN_SPACETIME ’;

The goal is to study the error between the exact solution and the approximation
computed by NS2DDV when both space and time meshes are refined. More precisely, we
consider a space mesh list (M1, . . . ,MK) and a time step bound list (∆t1, . . . ,∆tK) with

∆tk = Cmh
αm
k,min + CMh

αM
k,max ,

where hk,min and hk,max are respectively the minimal and maximal edge length in the space
mesh Mk, and Cm, CM , αm, αM can be specified by the user in the setup file as follows:

% Value of alphamax

PARAMETERS.FE.ALPHAMAX_STEP_TIME = αM ;

% Value of alphamin

PARAMETERS.FE.ALPHAMIN_STEP_TIME = αm;

% Value of Cmax

PARAMETERS.FE.CMAX_STEP_TIME = CM ;

% Value of Cmin

PARAMETERS.FE.CMIN_STEP_TIME = Cm;

Consequently, the user just has to characterize the space meshes M1, . . . ,MK to com-
plete the definitions of the time step bounds ∆t1, . . . ,∆tK and, implicitely, the definition
of the time meshes (t0k, . . . , t

Nk
k ) for each k = 1, . . . , K. For this purpose, we refer to the

paragraph 8.5.1 dedicated to the convergence in space for a full definition of the space
mesh list. Note that the default values for Cm, CM , αm, αM are the same as in paragraph
8.5.1.

As for convergence in space mesh refinement or time mesh refinement, the dynamics
of each simulation is not saved as .mat/.h5 files but only the log file in the present casen
and, assuming that the following lines are in the setup file

PARAMETERS.MODEL = ’themodel ’;

PARAMETERS.TESTCASE = ’thetestcase ’;

PARAMETERS.OUTPUT.DIRECTORY_NAME = ’thedirectory ’;

the simulation associated with the couple (∆tk,Mk) will produce a log file in the sub-
directory thedirectory/themodel thetestcase k.

Once all simulations are finished, NS2DDV analyses the log files that have been pro-
duced by each of these simulations and focuses on some specific diagnostics including the
following errors:
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• Error on the velocity:

eu,∆tk,Mk
= max

nk = 0,...,Nk
‖u∆tk,Mk

(tnkk , ·)− uex(t
nk
k , ·)‖(L2(Ω))2 ,

• Error on the pressure:

ep,∆tk,Mk
= max

nk = 0,...,Nk
‖p∆tk,Mk

(tnkk , ·)− pex(t
nk
k , ·)‖L2(Ω) ,

• Error on the density (only for NSDV model):

eρ,∆tk,Mk
= max

nk = 0,...,Nk
‖ρ∆tk,Mk

(tnkk , ·)− ρex(t
nk
k , ·)‖(L2(Ω))2 .

The very last part of the convergence analysis consists in plotting and saving the following
errors curves in EPS file format for summarizing the convergence of the involved numerical
methods as the space-time mesh is refined:

• ∆tk 7→ eu,∆tk,Mk
, ∆tk 7→ ep,∆tk,Mk

and ∆tk 7→ eρ,∆tk,Mk
(convergence as the the time

mesh is refined),

• hk,max 7→ eu,∆tk,Mk
, hk,max 7→ ep,∆tk,Mk

and hk,max 7→ eρ,∆tk,Mk
(convergence as the

space mesh is refined).

8.5.4 Stability analysis according to the Reynolds number

In this paragraph, it is assumed that the user chose the answer ’IN REYNOLDS’ to the
question in the introduction of Section 8.5. Hence, (s)he will find in the non-modifiable
part of the setup file the following line:

PARAMETERS.CV_STUDY = ’IN_REYNOLDS ’;

The goal is to study the stability of the involved numerical methods for several values
of the Reynolds number Re and with a single space mesh M and a single time step bound
∆t. Indeed, it is well known that time semi-discrete schemes such as BDF2 methods
that are described in Section 6.2 become unstable for large values or Re. For measur-
ing the stability of the numerical methods according to Re, we first consider a Reynolds
number family (Re1, . . . , ReK) that can be precised by the user in the setup file as follows:

% Reynolds number (provide several values for stability analysis)

PARAMETERS.PHYSICAL.RE = {Re1, ..., ReK };

Then the stability of the method is studied in terms of error between the approxima-
tion of (u, p) (and ρ for NSDV model), so an analytical solution is required. This why such
analysis can be performed with EXAC and EXACNEU test cases only.
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As for convergence studies, the dynamics of each simulation is not saved as .mat/.h5
files but only the log file in the present casen and, assuming that the following lines are
in the setup file

PARAMETERS.MODEL = ’themodel ’;

PARAMETERS.TESTCASE = ’thetestcase ’;

PARAMETERS.OUTPUT.DIRECTORY_NAME = ’thedirectory ’;

the simulation associated with the the Reynolds number Rek will produce a log file in
the subdirectory thedirectory/themodel thetestcase k.

Once all simulations are finished, NS2DDV analyses the log files that have been pro-
duced by each of these simulations and focuses on some specific diagnostics including the
following errors:

• Error on the velocity with Reynolds number Rek:

eu,∆t,M(Rek) = max
n= 0,...,N

‖u∆tk,M(tnk , ·)− uex(t
n
k , ·)‖(L2(Ω))2 ,

• Error on the pressure with Reynolds number Rek:

ep,∆t,M(Rek) = max
n= 0,...,N

‖p∆t,M(tn, ·)− pex(tn, ·)‖L2(Ω) ,

• Error on the density with Reynolds number Rek (only for NSDV model):

eρ,∆t,M(Rek) = max
n= 0,...,N

‖ρ∆t,M(tn, ·)− ρex(tn, ·)‖(L2(Ω))2 .

The very last part of the convergence analysis consists in plotting and saving the following
errors curves in EPS file format for the evolution of the errors Rek 7→ eu,∆t,M(Rek),
Rek 7→ ep,∆t,M(Rek) and Rek 7→ eρ,∆t,M(Rek) as the Reynolds number becomes larger.
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9 High Performance Computing features

9.1 Matlab Parallel Computing Toolbox

A fraction of the computations led in NS2DDV have been parallelized with the Matlab
Parallel Computing Toolbox (PCT) from Mathworks (not free). The user can verify if
(s)he is equipped with such toolbox by typing the following Matlab command:

>> ver distcomp

In the case where the answer is positive, the user can parallelize NS2DDV runs by
choosing ’PCT’ to the last question of the script generate setup file.m. This will pro-
duce a setup file with the following parameters:

% Parallelization parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Number of CPU workers (default value = localcluster.NumWorkers)

PARAMETERS.PARALLELIZATION.NBWORKERS = localcluster.NumWorkers;

PARAMETERS.PARALLELIZATION.NBWORKERS is set to localcluster.NumWorkers by
default (maximal number of Matlab workers that can be used in a single use of Matlab
PCT with the cluster profile localcluster). The user can replace this value by the
number of workers (s)he wants but should not bypass the hardware limit: in such case,
Matlab will prematurely stop the run.

Note that 3 cluster profiles are currently available:

• ’LOCAL’: profile cluster for a run on the local computer (can be run on any com-
puter),

• ’MATHCALC’: pre-built profile cluster for a run on the cluster of Paul Painlevé Lab-
oratory (account needed),

• ’ZEUS’: pre-built profile cluster for a run on the Computing Ressources Center of
Lille University (account needed).

9.2 Resuming a simulation

NS2DDV embeds the ability to resume a simulation that has been stopped for any ex-
ternal reason (keyboard interruption signal, end of ”batched” job, ...). To do this, the
user must use the starting routine start ns2ddv on a backup file (.mat binary format)
instead of a setup file (.m text format).

>> start_ns2ddv(’./ BACKUP/backup_diags_0.mat’);

Such backup file contains all the required data for resuming a simulation and is period-
ically generated and/or updated by the initial simulation. For managing the backup files
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generation, the user must fill the following parameters in the setup file before initializing
the simulation:

% Backup parameters

%%%%%%%%%%%%%%%%%%%

% Number of backup files (default = 1)

% Each backup file contains the required data to restart the

% code after a critical crash

PARAMETERS.BACKUP.NB_FILES = 1;

% Backup frequency (default = 10)

PARAMETERS.BACKUP.FREQUENCY = 10;

% Backup file location

PARAMETERS.BACKUP.DIRECTORY_NAME = ’./ BACKUP ’;

PARAMETERS.BACKUP.FREQUENCY is the frequency at which NS2DDV will generate a
backup file. For example, if it is set to 10, a backup file will be generated at time iteration
0, 10, 20, 30...
PARAMETERS.BACKUP.NB FILES stands for the number of distinct backup files to be gener-
ated. For example, setting this parameter to 5 and taking PARAMETERS.BACKUP.FREQUENCY

= 10 mean

• the file ** backup 0.mat will contain the data for performing time iteration 0,

• the file ** backup 1.mat will contain the data for performing time iteration 10,

• the file ** backup 2.mat will contain the data for performing time iteration 20,

• the file ** backup 3.mat will contain the data for performing time iteration 30,

• the file ** backup 4.mat will contain the data for performing time iteration 40,

• the file ** backup 0.mat will be replaced for containing the data for time iteration
50,

• the file ** backup 1.mat will be replaced for containing the data for time iteration
60,

• ...

If the simulation to be run requires a large number of time iterations, it is highly recom-
mended to have several and distinct backup files.
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10 Contact us

For questions about the code:

• Alexandre Mouton: alexandre.mouton@univ-lille.fr

For questions about the mathematics lying behind NS2DDV:

• Emmanuel Creusé: emmanuel.creuse@uphf.fr

• Caterina Calgaro: caterina.calgaro@univ-lille.fr
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[10] S. K. Hannani, Calcul d’écoulements laminaires et turbulents par une méthode
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