c_optim.h
#ifndef C_OPTIM_H
#define C_OPTIM_H
#include <Rcpp.h>
namespace rstpm2 {
typedef double optimfn(int, double *, void *);
typedef void optimgr(int, double *, double *, void *);
/* type of pointer to the target and gradient functions for Nlm */
typedef void (*fcn_p)(int, double *, double *, void *);
/* type of pointer to the hessian functions */
typedef void (*d2fcn_p)(int, int, double *, double *, void *);
double min(double a, double b);
double max(double a, double b);
double bound(double x, double lower, double upper);
/**
Adapt a function object (functor) for NelderMead and BFGS
**/
template<class T>
double adapt_functor(int n, double * beta, void * par) {
T * model = (T *) par;
Rcpp::NumericVector x(beta,beta+n);
return model->operator()(x);
}
/**
Adapt an negll function for NelderMead and BFGS
**/
template<class T>
double adapt_negll(int n, double * beta, void * par) {
T * model = (T *) par;
Rcpp::NumericVector x(beta,beta+n);
return model->negll(x);
}
/**
Adapt a grad_negll function for BFGS
**/
template<class T>
void adapt_grad_negll(int n, double * beta, double * grad, void * par) {
T * model = (T *) par;
Rcpp::NumericVector x(beta,beta+n);
//grad = model->grad_negll(x);
}
class NelderMead {
public:
NelderMead(int trace = 0, int maxit = 500,
double abstol = - INFINITY,
double reltol = 1.0e-8,
double alpha = 1.0, double beta = 0.5, double gamma = 2.0,
double epshess = 6.055454e-06, bool hessianp = true);
virtual void optim(optimfn fn, Rcpp::NumericVector init, void * ex);
template<class T>
void optim(Rcpp::NumericVector init, T object) {
optim(&adapt_functor<T>,init,(void *) &object);
}
virtual Rcpp::NumericMatrix calc_hessian(optimfn fn, void * ex);
int n, trace, maxit, fail, fncount;
double abstol, reltol, alpha, beta, gamma, Fmin, epshess;
bool hessianp;
Rcpp::NumericVector coef;
Rcpp::NumericMatrix hessian;
};
class BFGS {
public:
BFGS(int trace = 0, int maxit = 100,
double abstol = - INFINITY,
double reltol = 1.0e-8, int report = 10, double epshess = 1.0e-8, bool hessianp = true);
virtual void optim(optimfn fn, optimgr gr, Rcpp::NumericVector init, void * ex);
virtual double calc_objective(optimfn fn, Rcpp::NumericVector coef, void * ex);
virtual double calc_objective(optimfn fn, void * ex);
virtual Rcpp::NumericMatrix calc_hessian(optimgr gr, void * ex);
int n, trace, maxit, report, fncount, grcount, fail;
double abstol, reltol, Fmin, epshess;
bool hessianp;
Rcpp::NumericVector coef;
Rcpp::NumericMatrix hessian;
};
class Nlm {
public:
Nlm(double fscale = 1.0, // nlm()
int method = 2, // cf. nlm: method=1
int iexp = 1, // nlm()
int msg = 9, // nlm()
int ndigit = 12, // nlm()
int itnlim = 50, // nlm()
int iagflg = 1, // nlm()
int iahflg = 0, // nlm()
double dlt = 1.0, // nlm
double gradtl = 1.0e-6, // nlm()
double stepmx = 0.0, // set to -1.0 to get nlm()'s behaviour
double steptl = 1.0e-6, // nlm()
int itrmcd = 0,
int itncnt = 0,
bool hessianp = true
);
void optim(fcn_p fcn, fcn_p d1fcn, Rcpp::NumericVector init, void * state); // assumes iahflg=0
double calc_objective(fcn_p fn, Rcpp::NumericVector coef, void * ex);
double calc_objective(fcn_p fn, void * ex);
Rcpp::NumericMatrix calc_hessian(fcn_p gr, void * ex);
void set_print_level(int);
double fscale;
int method;
int iexp;
int msg;
int ndigit;
int itnlim;
int iagflg;
int iahflg;
double dlt;
double gradtl;
double stepmx;
double steptl;
int itrmcd;
int itncnt;
bool hessianp;
Rcpp::NumericVector coef;
Rcpp::NumericMatrix hessian;
};
typedef double (*Brent_fminfn)(double, void *);
double Brent_fmin(double ax, double bx, double (*f)(double, void *),
void *info, double tol);
/**
Adapt a function object (functor) to work with Brent_fmin()
**/
template<class T, class X>
double Brent_fmin_functor(X x, void * par) {
T * model = (T *) par;
return model->operator()(x);
}
/**
Use Brent_fmin with a function object (functor)
**/
template<class T>
double BrentFmin(double a, double b, T obj, double eps = 1.0e-8) {
return Brent_fmin(a,b,&Brent_fmin_functor<T,double>,(void *) &obj,eps);
}
} // anonymous rstpm2
#endif /* c_optim_h */