#ifndef C_OPTIM_H #define C_OPTIM_H #include namespace rstpm2 { typedef double optimfn(int, double *, void *); typedef void optimgr(int, double *, double *, void *); /* type of pointer to the target and gradient functions for Nlm */ typedef void (*fcn_p)(int, double *, double *, void *); /* type of pointer to the hessian functions */ typedef void (*d2fcn_p)(int, int, double *, double *, void *); double min(double a, double b); double max(double a, double b); double bound(double x, double lower, double upper); /** Adapt a function object (functor) for NelderMead and BFGS **/ template double adapt_functor(int n, double * beta, void * par) { T * model = (T *) par; Rcpp::NumericVector x(beta,beta+n); return model->operator()(x); } /** Adapt an negll function for NelderMead and BFGS **/ template double adapt_negll(int n, double * beta, void * par) { T * model = (T *) par; Rcpp::NumericVector x(beta,beta+n); return model->negll(x); } /** Adapt a grad_negll function for BFGS **/ template void adapt_grad_negll(int n, double * beta, double * grad, void * par) { T * model = (T *) par; Rcpp::NumericVector x(beta,beta+n); //grad = model->grad_negll(x); } class NelderMead { public: NelderMead(int trace = 0, int maxit = 500, double abstol = - INFINITY, double reltol = 1.0e-8, double alpha = 1.0, double beta = 0.5, double gamma = 2.0, double epshess = 6.055454e-06, bool hessianp = true); virtual void optim(optimfn fn, Rcpp::NumericVector init, void * ex); template void optim(Rcpp::NumericVector init, T object) { optim(&adapt_functor,init,(void *) &object); } virtual Rcpp::NumericMatrix calc_hessian(optimfn fn, void * ex); int n, trace, maxit, fail, fncount; double abstol, reltol, alpha, beta, gamma, Fmin, epshess; bool hessianp; Rcpp::NumericVector coef; Rcpp::NumericMatrix hessian; }; class BFGS { public: BFGS(int trace = 0, int maxit = 100, double abstol = - INFINITY, double reltol = 1.0e-8, int report = 10, double epshess = 1.0e-8, bool hessianp = true); virtual void optim(optimfn fn, optimgr gr, Rcpp::NumericVector init, void * ex); virtual double calc_objective(optimfn fn, Rcpp::NumericVector coef, void * ex); virtual double calc_objective(optimfn fn, void * ex); virtual Rcpp::NumericMatrix calc_hessian(optimgr gr, void * ex); int n, trace, maxit, report, fncount, grcount, fail; double abstol, reltol, Fmin, epshess; bool hessianp; Rcpp::NumericVector coef; Rcpp::NumericMatrix hessian; }; class Nlm { public: Nlm(double fscale = 1.0, // nlm() int method = 2, // cf. nlm: method=1 int iexp = 1, // nlm() int msg = 9, // nlm() int ndigit = 12, // nlm() int itnlim = 50, // nlm() int iagflg = 1, // nlm() int iahflg = 0, // nlm() double dlt = 1.0, // nlm double gradtl = 1.0e-6, // nlm() double stepmx = 0.0, // set to -1.0 to get nlm()'s behaviour double steptl = 1.0e-6, // nlm() int itrmcd = 0, int itncnt = 0, bool hessianp = true ); void optim(fcn_p fcn, fcn_p d1fcn, Rcpp::NumericVector init, void * state); // assumes iahflg=0 double calc_objective(fcn_p fn, Rcpp::NumericVector coef, void * ex); double calc_objective(fcn_p fn, void * ex); Rcpp::NumericMatrix calc_hessian(fcn_p gr, void * ex); void set_print_level(int); double fscale; int method; int iexp; int msg; int ndigit; int itnlim; int iagflg; int iahflg; double dlt; double gradtl; double stepmx; double steptl; int itrmcd; int itncnt; bool hessianp; Rcpp::NumericVector coef; Rcpp::NumericMatrix hessian; }; typedef double (*Brent_fminfn)(double, void *); double Brent_fmin(double ax, double bx, double (*f)(double, void *), void *info, double tol); /** Adapt a function object (functor) to work with Brent_fmin() **/ template double Brent_fmin_functor(X x, void * par) { T * model = (T *) par; return model->operator()(x); } /** Use Brent_fmin with a function object (functor) **/ template double BrentFmin(double a, double b, T obj, double eps = 1.0e-8) { return Brent_fmin(a,b,&Brent_fmin_functor,(void *) &obj,eps); } } // anonymous rstpm2 #endif /* c_optim_h */