Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:1342d60885fd60cb6a597f2d551c7b2f9db6d2af

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
## ----message=FALSE, warning=FALSE, include=FALSE-------------------------
library(knitr)
options(knitr.kable.NA = '')
knitr::opts_chunk$set(comment=">")
options(digits=2)

set.seed(333)

## ----message=FALSE, warning=FALSE, echo=FALSE, fig.cap="Correlation between the frequentist p-value and the probability of direction (pd)", fig.align='center'----
library(dplyr)
library(tidyr)
library(ggplot2)
library(see)

read.csv("https://raw.github.com/easystats/easystats/master/publications/makowski_2019_bayesian/data/data.csv") %>% 
  mutate(effect_existence = ifelse(true_effect == 1, "Presence of true effect", "Absence of true effect"),
         p_direction = p_direction * 100) %>% 
  ggplot(aes(x=p_direction, y=p_value, color=effect_existence)) +
  geom_point2(alpha=0.1) +
  geom_segment(aes(x=95, y=Inf, xend=95, yend=0.1), color="black", linetype="longdash") +
  geom_segment(aes(x=-Inf, y=0.1, xend=95, yend=0.1), color="black", linetype="longdash") +
  geom_segment(aes(x=97.5, y=Inf, xend=97.5, yend=0.05), color="black", linetype="dashed") +
  geom_segment(aes(x=-Inf, y=0.05, xend=97.5, yend=0.05), color="black", linetype="dashed") +
  theme_modern() +
  scale_y_reverse(breaks = c(0.05, round(seq(0, 1, length.out = 11), digits=2))) +
  scale_x_continuous(breaks = c(95, 97.5, round(seq(50, 100, length.out = 6)))) +
  scale_color_manual(values=c("Presence of true effect"="green", "Absence of true effect"="red")) +
  theme(legend.title = element_blank()) +
  guides(colour = guide_legend(override.aes = list(alpha = 1))) +
  xlab("Probability of Direction (pd)") +
  ylab("Frequentist p-value")

## ----message=FALSE, warning=FALSE, fig.align='center'--------------------
library(bayestestR)
library(logspline)
library(KernSmooth)

# Compute the correlations
data <- data.frame()
for(the_mean in runif(25, 0, 4)){
  for(the_sd in runif(25, 0.5, 4)){
    x <- rnorm(100, the_mean, abs(the_sd))
    data <- rbind(data,
      data.frame("direct" = pd(x),
                 "kernel" = pd(x, method="kernel"),
                 "logspline" = pd(x, method="logspline"),
                 "KernSmooth" = pd(x, method="KernSmooth")
                 ))
  }
}
data <- as.data.frame(sapply(data, as.numeric))

# Visualize the correlations
library(ggplot2)
library(GGally)

GGally::ggpairs(data) +
  theme_classic()

## ----message=FALSE, warning=FALSE----------------------------------------
data <- data.frame()
for(i in 1:25){
  the_mean <- runif(1, 0, 4)
  the_sd <- abs(runif(1, 0.5, 4))
  parent_distribution <- rnorm(100000, the_mean, the_sd)
  true_pd <- pd(parent_distribution)
  
  for(j in 1:25){
    sample_size <- round(runif(1, 25, 5000))
    subsample <- sample(parent_distribution, sample_size)
    data <- rbind(data,
      data.frame("sample_size" = sample_size, 
                 "true" = true_pd,
                 "direct" = pd(subsample) - true_pd,
                 "kernel" = pd(subsample, method="kernel")- true_pd,
                 "logspline" = pd(subsample, method="logspline") - true_pd,
                 "KernSmooth" = pd(subsample, method="KernSmooth") - true_pd
                 ))
  }
}
data <- as.data.frame(sapply(data, as.numeric))

## ----message=FALSE, warning=FALSE, fig.align='center'--------------------
library(tidyr)
library(dplyr)

data %>% 
  tidyr::gather(Method, Distance, -sample_size, -true) %>% 
  ggplot(aes(x=sample_size, y = Distance, color = Method, fill= Method)) +
  geom_point(alpha=0.3, stroke=0, shape=16) +
  geom_smooth(alpha=0.2) +
  geom_hline(yintercept=0) +
  theme_classic() +
  xlab("\nDistribution Size")

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API