\name{retstable} \alias{retstable} \alias{retstableR} \title{Sampling Exponentially Tilted Stable Distributions} \description{ Generating random variates of an exponentially tilted stable distribution of the form \deqn{\tilde{S}(\alpha, 1, (\cos(\alpha\pi/2)V_0)^{1/\alpha}, V_0\mathbf{1}_{\{\alpha=1\}}, h\mathbf{1}_{\{\alpha\ne 1\}}; 1), }{tS(alpha, 1, (cos(alpha*pi/2)V0)^(1/alpha), V0*1_(alpha==1), h*1_(alpha!=1)),} with parameters \eqn{\alpha\in(0,1]}{alpha in (0,1]}, \eqn{V_0\in(0,\infty)}{V0 in (0,Inf)}, and \eqn{h\in[0,\infty)}{h in [0,Inf)} and corresponding Laplace-Stieltjes transform \deqn{\exp(-V_0((h+t)^\alpha-h^\alpha)),\ t\in[0,\infty]; }{exp(-V0((h+t)^alpha-h^alpha)), t in [0,Inf];} see the references for more details about this distribution. } \usage{ retstable(alpha, V0, h = 1, method = NULL) retstableR(alpha, V0, h = 1) } \arguments{ \item{alpha}{parameter in \eqn{(0,1]}.} \item{V0}{vector of values in \eqn{(0,\infty)}{(0,Inf)} (for example, when sampling nested Clayton copulas, these are random variates from \eqn{F_0}{F0}), that is, the distribution corresponding to \eqn{\psi_0}{psi0}.} \item{h}{parameter in \eqn{[0,\infty)}{[0,Inf)}.} \item{method}{a character string denoting the method to use, currently either \code{"MH"} (Marius Hofert's algorithm) or \code{"LD"} (Luc Devroye's algorithm). By default, when \code{NULL}, a smart choice is made to use the fastest of these methods depending on the specific values of \eqn{V_0}{V0}.} } \details{ \code{retstableR} is a pure \R version of \code{"MH"}, however, not as fast as \code{retstable} (implemented in C, based on both methods) and therefore not recommended in simulations when run time matters. } \value{ A vector of variates from \eqn{\tilde{S}(\alpha, 1, .....)}{tS(alpha, 1, .....)}; see above. } \author{Marius Hofert, Martin Maechler} \seealso{ \code{\link{rstable1}} for sampling stable distributions. } \references{ Hofert, M. (2011) Efficiently sampling nested Archimedean copulas, \emph{Computational Statistics & Data Analysis} \bold{55}, 57--70. Hofert, M. (2012), Sampling exponentially tilted stable distributions, \emph{ACM Transactions on Modeling and Computer Simulation} \bold{22}, 1, page numbers: to be announced. } \examples{ ## Draw random variates from an exponentially tilted stable distribution ## with given alpha, V0, and h = 1 alpha <- .2 V0 <- rgamma(200, 1) rETS <- retstable(alpha, V0) ## Distribution plot the random variates -- log-scaled hist(log(rETS), prob=TRUE) lines(density(log(rETS)), col=2) rug (log(rETS)) } \keyword{distribution}