\name{psiDabsMC} \alias{psiDabsMC} \title{Absolute Value of Generator Derivatives via Monte Carlo} \description{ Computes the absolute values of the \eqn{d}th generator derivative \eqn{\psi^{(d)}}{psi^{(d)}} via Monte Carlo simulation. } \usage{ psiDabsMC(t, family, theta, degree = 1, n.MC, method = c("log", "direct", "pois.direct", "pois"), log = FALSE) } \arguments{ \item{t}{\code{\link{numeric}} vector of evaluation points.} \item{family}{Archimedean family (name or object).} \item{theta}{parameter value.} \item{degree}{order \eqn{d} of the derivative.} \item{n.MC}{Monte Carlo sample size.} \item{method}{different methods: \describe{ \item{\code{"log"}:}{evaluates the logarithm of the sum involved in the Monte Carlo approximation in a numerically stable way;} \item{\code{"direct"}:}{directly evaluates the sum;} \item{\code{"pois.direct"}:}{interprets the sum in terms of the density of a Poisson distribution and evaluates this density directly;} \item{\code{"pois"}:}{as for \code{method="pois"} but evaluates the logarithm of the Poisson density in a numerically stable way.} } } \item{log}{if TRUE the logarithm of psiDabs is returned.} } \details{ The absolute value of the \eqn{d}th derivative of the Laplace-Stieltjes transform \eqn{\psi=\mathcal{LS}[F]}{psi=LS[F]} can be approximated via \deqn{(-1)^d\psi^{(d)}(t)=\int_0^\infty x^d\exp(-tx)\,dF(x)\approx\frac{1}{N}\sum_{k=1}^NV_k^d\exp(-V_kt),\ t > 0,}{% (-1)^d psi^{(d)}(t) = int_0^Inf x^d exp(-tx) dF(x) ~= (1/N) sum(k=1..N)V_k^d exp(-V_k t), t > 0,} where \eqn{V_k\sim F,\ k\in\{1,\dots,N\}}{V_k ~ F, k in {1,...,N}}. This approximation is used where \eqn{d=}\code{degree} and \eqn{N=}\code{n.MC}. Note that this is comparably fast even if \code{t} contains many evaluation points, since the random variates \eqn{V_k\sim F,\ k\in\{1,\dots,N\}}{V_k ~ F, k in {1,...,N}} only have to be generated once, not depending on \code{t}. } \value{ \code{\link{numeric}} vector of the same length as \code{t} containing the absolute values of the generator derivatives. } \author{Marius Hofert} \references{ Hofert, M., \enc{Mächler}{Maechler}, M., and McNeil, A. J. (2011a), Estimators for Archimedean copulas in high dimensions: A comparison, to be submitted. } \seealso{ \code{\link{acopula-families}}. } \examples{ t <- c(0:100,Inf) set.seed(1) psiDabsMC(t, family="Gumbel", theta=2, degree=10, n.MC=10000, log=TRUE) ## Note: The absolute value of the derivative at 0 should be Inf for ## Gumbel, however, it is always finite for the Monte Carlo approximation } \keyword{distribution}