\name{Extremal t} \alias{RPopitz} \alias{extremal t} \alias{extremal t process} \title{Extremal t process} \description{ \command{RPopitz} defines an extremal t process. } \usage{ RPopitz(phi, xi, mu, s, alpha) } \arguments{ \item{phi}{an \command{\link{RMmodel}}; covariance model for a standardized Gaussian random fields, or the field itself. } \item{xi,mu,s}{the extreme value index, the location parameter and the scale parameter, respectively, of the generalized extreme value distribution. See Details. } \item{alpha}{originally referred to the \eqn{\alpha}-Frechet marginal distribution, see the original literature for details. } } \details{ The argument \code{xi} is always a number, i.e. \eqn{\xi} is constant in space. In contrast, \eqn{\mu} and \eqn{s} might be constant numerical value or given a \code{\link{RMmodel}}, in particular by a \code{\link{RMtrend}} model. The default values of \eqn{mu} and \eqn{s} are \eqn{1} and \eqn{z\xi}, respectively. } \author{Martin Schlather, \email{schlather@math.uni-mannheim.de} \url{http://ms.math.uni-mannheim.de/de/publications/software} } \references{ \itemize{ \item Davison, A.C., Padoan, S., Ribatet, M. (2012). Statistical modelling of spatial extremes. \emph{Stat. Science} \bold{27}, 161-186. \item Opitz, T. (2012) A spectral construction of the extremal t process. \emph{arxiv} \bold{1207.2296}. } } \seealso{ \command{\link{RMmodel}}, \command{\link{RPgauss}}, \command{\link{maxstable}}, \command{\link{maxstableAdvanced}} } \keyword{spatial} \examples{ RFoptions(seed=0, xi=0) ## seed=0: *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again ## xi=0: any simulated max-staable random field has extreme value index 0 \dontshow{StartExample()} x <- seq(0, 2, 0.01) model <- RPopitz(RMgauss(), alpha=2) z1 <- RFsimulate(model, x) plot(z1, type="l") \dontshow{FinalizeExample()} }