library(reticulate) source("scripts/ML_py.R") source_python('python/mss.py') source_python('python/SMMsplot.py') ML_load() condition = "dCTD MMC" x <- py_load_object(file.path("D:/Imaging_data/MFM_test_data/x.pydata")) y <- py_load_object(file.path("D:/Imaging_data/MFM_test_data/y.pydata")) allStates <- py_load_object(file.path("D:/Imaging_data/MFM_test_data/allStates.pydata")) out <- dlply(segments_all[[condition]],.variables = c("cellID","track")) inmask <- laply(out,function(x){ any(x$inMask) }) x2 <- x[inmask] y2 <- y[inmask] allStates2 <- allStates[inmask] x3 <- x[!inmask] y3 <- y[!inmask] allStates3 <- allStates[!inmask] py_run_string("pixSize= 0.1") py_run_string("t = 0.05") #mss(x,y,allStates) plt <- SMMsplot(x2,y2,allStates2) py_run_string("plt.show()") matplt <- import("matplotlib") test <- plot test$show ## inside <- getTrackPieces(x2,y2,allStates2) lengths <- laply(inside[[5]],length)/10 lenghts_df <- data.frame("lengths"=lengths) ggplot(lenghts_df, aes(x = lengths))+ geom_histogram() +xlim(c(-1,20))+xlab("Track Length (s)") outside <- getTrackPieces(x3,y3,allStates3) lengths_out <- laply(outside[[5]],length) lenghts_out_df <- data.frame("lengths"=lengths_out/10,"inMask"=FALSE) ggplot(rbind(lenghts_df,lenghts_out_df), aes(x = lengths,y=..density..,fill=inMask)) +geom_histogram(position="identity",alpha=0.35) +xlab("Track Length (s)")+xlim(c(0,10)) ggplot(data = msd_fit_all$`dDBD HU`,aes(x=D,y=..density..,color=inMask)) + geom_histogram(position="identity",fill="white",alpha=0.1) + scale_x_log10(limits=c(0.00005,2))