
Piloting PyCSP3 Solvers with General Options

Christophe Lecoutre and Charles Prud’homme

CRIL & LINA

August 24, 2020

Abstract. This document lists the general options that can be used to
pilot embedded solvers, which are directly run when compiling PyCSP3

models. Currently, AbsCon [6] and Choco [10] are the two first embedded
solvers. Additional solvers are expected to be embedded in the medium
term.

1 Introduction

For generating an XCSP3 file from a PyCSP3 model, you have to execute the
following command:

python <file> [options]

where:

• <file> is a Python file that contains a PyCSP3 model
• [options] are possible options that can be used when compiling

Among the options1, we find:

• -solve that attempts to solve the instance with the embedded solver AbsCon
while using default values for the options of the solver. It requires that Java
version 8 (at least) is installed.

• -solver=<solver_name> that attempts to solve the instance with the solver
whose name is given. Currently, it can be ’abscon’ or ’choco’. It requires that
Java version 8 (at least) is installed.

• -solver=[<solver_name>,<solver_options>] that attempts to solve the
instance with the solver whose name is given, while following the specified
general solver options. The general options are assumed to be valid whatever
is the selected solver. Note that we use square brackets (i.e., the symbols ’[’
and ’]’) to specify a list of terms with the symbol ’,’ used as a separator
(and no tolerated whitespace). The options are then given in sequence with
’,’ acting as separator. If an option is complex (i.e., needs more than a single
piece of information), the square brackets are recursively used to specify
them.

1 Other options concerning data and model are described in
https://pypi.org/project/pycsp3/

https://pypi.org/project/pycsp3/


Among the general solver options (used when one wants to directly solve a
problem instance while compiling a PyCSP3 model), specified to pilot the solver
when using -solver, we find:

• a limit on search with limit

• a variable ordering heuristic with varHeuristic

• a value ordering heuristic with valHeuristic

• a complementary technique for guiding search with lc, cos and last

• a restart policy with restarts

• objective lower and upper bounds (for optimization) with lb and ub

• a seed (for a random process) with seed

• a verbose mode with v (and also vv or vvv)
• a trace of the search process with trace

and we can also use:

• some specific arguments for a given solver with args

For example,

python3 Zebra.py -solver=[choco,limit=60s,varh=dom/wdeg,lc,v]

compiles the model Zebra.py and solves it with Choco while limiting search to
at most 60 seconds, using the classical variable ordering heuristic dom/wdeg with
last-conflict resoning activated, and displaying information in verbose mode.

If ever you want to do the same thing with AbsCon, you just replace the
name of the solver in the command line:

python3 Zebra.py -solver=[abscon,limit=60s,varh=dom/wdeg,lc,v]

2 Solver Options

In this section, we provide some details about the (general) solver options.

2.1 Limit

To set a limit on the solver, you must use the option limit followed by the
symbol ’=’, an integer, and finally a limit unit that can be:

• h for a number of hours
• m for a number of seconds
• s for a number of seconds
• sols for a number of solutions (relevant for decision problems)
• runs for a number of runs (relevant if a restart policy is used)

You can also combine several limits by putting them between square brackets.
The solver stops as soon as a limit is reached. For example,

limit=[20m,50runs]



indicates that the solver must stop when it has been running for 20 minutes or
when 50 runs have been executed.

When solving a CSP instance, the default behaviour of the embedded solvers
is to determine whether a solution exists or not, exhibiting the first found solution
when it exists. However, in some cases, one may want to compute all solutions.
This is possible with limit=no.

For example,

python Zebra.py -solver=[abscon,limit=no]

computes all solutions for the model/problem Zebra.py with the embedded solver
AbsCon.

2.2 Variable Ordering Heuristic

For telling the solver to adopt a specific variable ordering heuristic, you must
use the option varHeuristic, or equivalently varh, followed by the symbol ’=’
and a name among:

• input to select variables according to their order in the input file; this is
sometimes called lexico in the literature

• dom to select variables according to the size of the current domains [5]
• rand to select variables randomly
• ibs to use impact-based search [11]; as a consequence, the option valHeuristic

must not been used since a pair (variable,value) is actually selected
• abs to use activity-based search [9]; as a consequence, the option valHeuristic

must not been used since a pair (variable,value) is actually selected
• impact to select variables according to ibs (but values can be selected by

any value ordering heuristic)
• activity to select vaariables according to abs (but values can be selected

by any value ordering heuristic)
• dom/ddeg to select variables according to the ratio ’current domain size’ to

’dynamic degree’ [1]
• dom/wdeg to select variables according to constraint weighting [2]

2.3 Value Ordering Heuristic

For telling the solver to adopt a specific value heuristic, you must use the option
valHeuristic, or equivalently valh, followed by the symbol ’=’ and a name
among:

• min to select the minimal value in the current domain of the selected variable
• max to select the maximal value in the current domain of the selected variable
• med to select the median value in the current domain of the selected variable
• mid to select the value in the middle of the domain
• rand to select values randomly
• best to select the best value according to BIVS (relevant for COP) [3]



2.4 Techniques to Go with Heuristics

For telling the solver to use last-conflict reasoning [7] , you must use the option
lastConflict, or equivalently lc, followed by the symbol ’=’ and an integer.
Note that lc alone is accepted, and is equivalent to lc=1.

For using conflict ordering search [4], you must use the option cos.
For using progress (or phase) saving, i.e., the fact of selecting in priority for

a variable the value assigned to it in the last solution, if a solution has already
been found and if the value is still present in the current domain, you must use
the option last.

2.5 Restarts

To use a restart policy, you must use the option restarts followed by the symbol
’=’ and a name among:

• monotonic
• geometric
• luby

It is also possible to use other arguments for restarts (then, arguments are
put beteween square brackets after the symbol ’=’). For all three policies, it is
possible to set the value of the initial cutoff, i.e., the one used to stop the first
run. For geometric, it is also possible to indicate the factor used to increase the
value of the cutoff between two runs. You must use:

• cutoff followed by ’=’ and an integer
• factor followed by ’=’ and an integer

If κ denotes the value of the initial cutoff, and φ the geometric factor, the
length (cutoff) of the ith run is:

• κ ∗ i for the monotonic restart policy
• l(i− 1)φ for the geometric restart policy where l(i− 1) is the length of the

i-1th run, and l(1) = κ.

For example, to express a geometric restart policy, of initial cutoff 100 and
factor 1.2, we write:

restarts=[geometric,cutoff=100,factor=1.2]

Note that the default value is expected to be 10.

2.6 Lower and Upper Bounds

When solving a COP instance, one may wish to indicate a lower bound and/or
an upper bound concerning the objective value. You can use the options

• lb followed by ’=’ and an integer, indicating that the solver should not seek
solutions of costs less than or equal to the specified value

• ub, followed by ’=’ and an integer, indicating that the solver should not seek
solutions of costs greater than or equal to the specified value



2.7 Seed

When the solver is expected to use random numbers, it is possible to initialize
the random generator with a specific seed. To set a seed, you must use the option
seed followed by the symbol ’=’ and an integer. For example:

seed=100

2.8 Output in Verbose Mode

In addition to the normal mode (when the option is not used at all), you can
choose among:

• v , or equivalently, verbose
• vv for very verbose
• vvv for very very verbose

Important When a verbose mode is used or when the option -solve is
used, the output of the solver is shown normally. In normal mode, the output
of the solver is intercepted, and a succinct information is given after the solving
process.

The output follows a specific format (to be defined).

2.9 Trace

For displaying the trace of the solver, you must use the option trace: the trace
is displayed in standard system output. It is also possible to indicate the name
of a file after the symbol ’=’, as in:

trace=traceExample.txt

The trace follows a specific format (to be defined).

2.10 Specific Arguments

Some arguments remain specific to solvers. For example, when using AbsCon,
you can indicate that you want to use the propagator (filtering algorithm) STR2
[8] for positive table constraints with -positive=str2. Then, you must use args
with a string (between double quotes) as value. This string will be concatenated,
exactly as it is written, after inserting a whitespace, to the command line used
to run the solver.

For example,

python3 Crosswords.py -data=h0504.json -solver=[abscon,args="-positive=str2"]

compiles the model Crosswords, with the data file h0504.json, and solves it
with AbsCon while using the algorithm STR2 for the positive table constraints.



Acknowledgements

This work has been supported by the project CPER DATA from the Hauts-de-
France Region.

References

1. C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings of CP’96, pages 61–75, 1996.

2. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

3. J.-G. Fages and C. Prud’homme. Making the first solution good! In Proceedings
of ICTAI’17, pages 1073–1077, 2017.

4. S. Gay, R. Hartert, C. Lecoutre, and P. Schauss. Conflict ordering search for
scheduling problems. In Proceedings of CP’15, pages 140–148, 2015.

5. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

6. C. Lecoutre. AbsCon, CRIL, CNRS, Univ. Artois. 2020. To be published on
GitHub.

7. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Reasonning from last conflict(s) in
constraint programming. Artificial Intelligence, 173(18):1592–1614, 2009.

8. Christophe Lecoutre. STR2: Optimized simple tabular reduction for table con-
straints. Constraints, 16(4):341–371, 2011.

9. L. Michel and P. Van Hentenryck. Activity-based search for black-box constraint
programming solvers. In Proceedings of CPAIOR’12, pages 228–243, 2012.

10. C. Prud’homme, J.-G. Fages, and X. Lorca. Choco-solver, TASC, INRIA Rennes,
LINA, Cosling S.A. 2016. https://choco-solver.org/.

11. P. Refalo. Impact-based search strategies for constraint programming. In Proceed-
ings of CP’04, pages 557–571, 2004.

https://choco-solver.org

	Piloting PyCSP3 Solvers with General Options
	Christophe Lecoutre and Charles Prud'homme

