// {{PREAMBLE_ADDITIONS}} // === Preamble library stuff === // Documentation for the public APIs defined in this file must be updated in: // site/source/docs/api_reference/preamble.js.rst // A prebuilt local version of the documentation is available at: // site/build/text/docs/api_reference/preamble.js.txt // You can also build docs locally as HTML or other formats in site/ // An online HTML version (which may be of a different version of Emscripten) // is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html //======================================== // Runtime code shared with compiler //======================================== {{RUNTIME}} #if RELOCATABLE Runtime.GLOBAL_BASE = Runtime.alignMemory(Runtime.GLOBAL_BASE, {{{ MAX_GLOBAL_ALIGN || 1 }}}); #endif {{{ maybeExport('Runtime') }}} #if USE_CLOSURE_COMPILER Runtime['addFunction'] = Runtime.addFunction; Runtime['removeFunction'] = Runtime.removeFunction; #endif #if BENCHMARK Module.realPrint = Module.print; Module.print = Module.printErr = function(){}; #endif #if SAFE_HEAP function getSafeHeapType(bytes, isFloat) { switch (bytes) { case 1: return 'i8'; case 2: return 'i16'; case 4: return isFloat ? 'float' : 'i32'; case 8: return 'double'; default: assert(0); } } #if SAFE_HEAP_LOG var SAFE_HEAP_COUNTER = 0; #endif function SAFE_HEAP_STORE(dest, value, bytes, isFloat) { #if SAFE_HEAP_LOG Module.print('SAFE_HEAP store: ' + [dest, value, bytes, isFloat, SAFE_HEAP_COUNTER++]); #endif if (dest <= 0) abort('segmentation fault storing ' + bytes + ' bytes to address ' + dest); if (dest % bytes !== 0) abort('alignment error storing to address ' + dest + ', which was expected to be aligned to a multiple of ' + bytes); if (dest + bytes > Math.max(DYNAMICTOP, STATICTOP)) abort('segmentation fault, exceeded the top of the available heap when storing ' + bytes + ' bytes to address ' + dest + '. STATICTOP=' + STATICTOP + ', DYNAMICTOP=' + DYNAMICTOP); assert(DYNAMICTOP <= TOTAL_MEMORY); setValue(dest, value, getSafeHeapType(bytes, isFloat), 1); } function SAFE_HEAP_STORE_D(dest, value, bytes) { SAFE_HEAP_STORE(dest, value, bytes, true); } function SAFE_HEAP_LOAD(dest, bytes, unsigned, isFloat) { if (dest <= 0) abort('segmentation fault loading ' + bytes + ' bytes from address ' + dest); if (dest % bytes !== 0) abort('alignment error loading from address ' + dest + ', which was expected to be aligned to a multiple of ' + bytes); if (dest + bytes > Math.max(DYNAMICTOP, STATICTOP)) abort('segmentation fault, exceeded the top of the available heap when loading ' + bytes + ' bytes from address ' + dest + '. STATICTOP=' + STATICTOP + ', DYNAMICTOP=' + DYNAMICTOP); assert(DYNAMICTOP <= TOTAL_MEMORY); var type = getSafeHeapType(bytes, isFloat); var ret = getValue(dest, type, 1); if (unsigned) ret = unSign(ret, parseInt(type.substr(1)), 1); #if SAFE_HEAP_LOG Module.print('SAFE_HEAP load: ' + [dest, ret, bytes, isFloat, unsigned, SAFE_HEAP_COUNTER++]); #endif return ret; } function SAFE_HEAP_LOAD_D(dest, bytes, unsigned) { return SAFE_HEAP_LOAD(dest, bytes, unsigned, true); } function SAFE_FT_MASK(value, mask) { var ret = value & mask; if (ret !== value) { abort('Function table mask error: function pointer is ' + value + ' which is masked by ' + mask + ', the likely cause of this is that the function pointer is being called by the wrong type.'); } return ret; } function segfault() { abort('segmentation fault'); } function alignfault() { abort('alignment fault'); } function ftfault() { abort('Function table mask error'); } #endif //======================================== // Runtime essentials //======================================== var __THREW__ = 0; // Used in checking for thrown exceptions. var ABORT = false; // whether we are quitting the application. no code should run after this. set in exit() and abort() var EXITSTATUS = 0; var undef = 0; // tempInt is used for 32-bit signed values or smaller. tempBigInt is used // for 32-bit unsigned values or more than 32 bits. TODO: audit all uses of tempInt var tempValue, tempInt, tempBigInt, tempInt2, tempBigInt2, tempPair, tempBigIntI, tempBigIntR, tempBigIntS, tempBigIntP, tempBigIntD, tempDouble, tempFloat; var tempI64, tempI64b; var tempRet0, tempRet1, tempRet2, tempRet3, tempRet4, tempRet5, tempRet6, tempRet7, tempRet8, tempRet9; function assert(condition, text) { if (!condition) { abort('Assertion failed: ' + text); } } var globalScope = this; // Returns the C function with a specified identifier (for C++, you need to do manual name mangling) function getCFunc(ident) { var func = Module['_' + ident]; // closure exported function if (!func) { {{{ makeEval("try { func = eval('_' + ident); } catch(e) {}") }}} } assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)'); return func; } var cwrap, ccall; (function(){ var JSfuncs = { // Helpers for cwrap -- it can't refer to Runtime directly because it might // be renamed by closure, instead it calls JSfuncs['stackSave'].body to find // out what the minified function name is. 'stackSave': function() { Runtime.stackSave() }, 'stackRestore': function() { Runtime.stackRestore() }, // type conversion from js to c 'arrayToC' : function(arr) { var ret = Runtime.stackAlloc(arr.length); writeArrayToMemory(arr, ret); return ret; }, 'stringToC' : function(str) { var ret = 0; if (str !== null && str !== undefined && str !== 0) { // null string // at most 4 bytes per UTF-8 code point, +1 for the trailing '\0' ret = Runtime.stackAlloc((str.length << 2) + 1); writeStringToMemory(str, ret); } return ret; } }; // For fast lookup of conversion functions var toC = {'string' : JSfuncs['stringToC'], 'array' : JSfuncs['arrayToC']}; // C calling interface. ccall = function ccallFunc(ident, returnType, argTypes, args, opts) { var func = getCFunc(ident); var cArgs = []; var stack = 0; #if ASSERTIONS assert(returnType !== 'array', 'Return type should not be "array".'); #endif if (args) { for (var i = 0; i < args.length; i++) { var converter = toC[argTypes[i]]; if (converter) { if (stack === 0) stack = Runtime.stackSave(); cArgs[i] = converter(args[i]); } else { cArgs[i] = args[i]; } } } var ret = func.apply(null, cArgs); #if ASSERTIONS if ((!opts || !opts.async) && typeof EmterpreterAsync === 'object') { assert(!EmterpreterAsync.state, 'cannot start async op with normal JS calling ccall'); } if (opts && opts.async) assert(!returnType, 'async ccalls cannot return values'); #endif if (returnType === 'string') ret = Pointer_stringify(ret); if (stack !== 0) { if (opts && opts.async) { EmterpreterAsync.asyncFinalizers.push(function() { Runtime.stackRestore(stack); }); return; } Runtime.stackRestore(stack); } return ret; } #if NO_DYNAMIC_EXECUTION == 0 var sourceRegex = /^function\s*\(([^)]*)\)\s*{\s*([^*]*?)[\s;]*(?:return\s*(.*?)[;\s]*)?}$/; function parseJSFunc(jsfunc) { // Match the body and the return value of a javascript function source var parsed = jsfunc.toString().match(sourceRegex).slice(1); return {arguments : parsed[0], body : parsed[1], returnValue: parsed[2]} } var JSsource = {}; for (var fun in JSfuncs) { if (JSfuncs.hasOwnProperty(fun)) { // Elements of toCsource are arrays of three items: // the code, and the return value JSsource[fun] = parseJSFunc(JSfuncs[fun]); } } cwrap = function cwrap(ident, returnType, argTypes) { argTypes = argTypes || []; var cfunc = getCFunc(ident); // When the function takes numbers and returns a number, we can just return // the original function var numericArgs = argTypes.every(function(type){ return type === 'number'}); var numericRet = (returnType !== 'string'); if ( numericRet && numericArgs) { return cfunc; } // Creation of the arguments list (["$1","$2",...,"$nargs"]) var argNames = argTypes.map(function(x,i){return '$'+i}); var funcstr = "(function(" + argNames.join(',') + ") {"; var nargs = argTypes.length; if (!numericArgs) { // Generate the code needed to convert the arguments from javascript // values to pointers funcstr += 'var stack = ' + JSsource['stackSave'].body + ';'; for (var i = 0; i < nargs; i++) { var arg = argNames[i], type = argTypes[i]; if (type === 'number') continue; var convertCode = JSsource[type + 'ToC']; // [code, return] funcstr += 'var ' + convertCode.arguments + ' = ' + arg + ';'; funcstr += convertCode.body + ';'; funcstr += arg + '=(' + convertCode.returnValue + ');'; } } // When the code is compressed, the name of cfunc is not literally 'cfunc' anymore var cfuncname = parseJSFunc(function(){return cfunc}).returnValue; // Call the function funcstr += 'var ret = ' + cfuncname + '(' + argNames.join(',') + ');'; if (!numericRet) { // Return type can only by 'string' or 'number' // Convert the result to a string var strgfy = parseJSFunc(function(){return Pointer_stringify}).returnValue; funcstr += 'ret = ' + strgfy + '(ret);'; } #if ASSERTIONS funcstr += "if (typeof EmterpreterAsync === 'object') { assert(!EmterpreterAsync.state, 'cannot start async op with normal JS calling cwrap') }"; #endif if (!numericArgs) { // If we had a stack, restore it funcstr += JSsource['stackRestore'].body.replace('()', '(stack)') + ';'; } funcstr += 'return ret})'; return eval(funcstr); }; #else // NO_DYNAMIC_EXECUTION is on, so we can't use the fast version of cwrap. // Fall back to returning a bound version of ccall. cwrap = function cwrap(ident, returnType, argTypes) { return function() { #if ASSERTIONS Runtime.warnOnce('NO_DYNAMIC_EXECUTION was set, ' + 'using slow cwrap implementation'); #endif return ccall(ident, returnType, argTypes, arguments); } } #endif })(); {{{ maybeExport("ccall") }}} {{{ maybeExport("cwrap") }}} function setValue(ptr, value, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit #if SAFE_HEAP if (noSafe) { switch(type) { case 'i1': {{{ makeSetValue('ptr', '0', 'value', 'i1', undefined, undefined, undefined, '1') }}}; break; case 'i8': {{{ makeSetValue('ptr', '0', 'value', 'i8', undefined, undefined, undefined, '1') }}}; break; case 'i16': {{{ makeSetValue('ptr', '0', 'value', 'i16', undefined, undefined, undefined, '1') }}}; break; case 'i32': {{{ makeSetValue('ptr', '0', 'value', 'i32', undefined, undefined, undefined, '1') }}}; break; case 'i64': {{{ makeSetValue('ptr', '0', 'value', 'i64', undefined, undefined, undefined, '1') }}}; break; case 'float': {{{ makeSetValue('ptr', '0', 'value', 'float', undefined, undefined, undefined, '1') }}}; break; case 'double': {{{ makeSetValue('ptr', '0', 'value', 'double', undefined, undefined, undefined, '1') }}}; break; default: abort('invalid type for setValue: ' + type); } } else { #endif switch(type) { case 'i1': {{{ makeSetValue('ptr', '0', 'value', 'i1') }}}; break; case 'i8': {{{ makeSetValue('ptr', '0', 'value', 'i8') }}}; break; case 'i16': {{{ makeSetValue('ptr', '0', 'value', 'i16') }}}; break; case 'i32': {{{ makeSetValue('ptr', '0', 'value', 'i32') }}}; break; case 'i64': {{{ makeSetValue('ptr', '0', 'value', 'i64') }}}; break; case 'float': {{{ makeSetValue('ptr', '0', 'value', 'float') }}}; break; case 'double': {{{ makeSetValue('ptr', '0', 'value', 'double') }}}; break; default: abort('invalid type for setValue: ' + type); } #if SAFE_HEAP } #endif } {{{ maybeExport("setValue") }}} function getValue(ptr, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit #if SAFE_HEAP if (noSafe) { switch(type) { case 'i1': return {{{ makeGetValue('ptr', '0', 'i1', undefined, undefined, undefined, undefined, '1') }}}; case 'i8': return {{{ makeGetValue('ptr', '0', 'i8', undefined, undefined, undefined, undefined, '1') }}}; case 'i16': return {{{ makeGetValue('ptr', '0', 'i16', undefined, undefined, undefined, undefined, '1') }}}; case 'i32': return {{{ makeGetValue('ptr', '0', 'i32', undefined, undefined, undefined, undefined, '1') }}}; case 'i64': return {{{ makeGetValue('ptr', '0', 'i64', undefined, undefined, undefined, undefined, '1') }}}; case 'float': return {{{ makeGetValue('ptr', '0', 'float', undefined, undefined, undefined, undefined, '1') }}}; case 'double': return {{{ makeGetValue('ptr', '0', 'double', undefined, undefined, undefined, undefined, '1') }}}; default: abort('invalid type for setValue: ' + type); } } else { #endif switch(type) { case 'i1': return {{{ makeGetValue('ptr', '0', 'i1') }}}; case 'i8': return {{{ makeGetValue('ptr', '0', 'i8') }}}; case 'i16': return {{{ makeGetValue('ptr', '0', 'i16') }}}; case 'i32': return {{{ makeGetValue('ptr', '0', 'i32') }}}; case 'i64': return {{{ makeGetValue('ptr', '0', 'i64') }}}; case 'float': return {{{ makeGetValue('ptr', '0', 'float') }}}; case 'double': return {{{ makeGetValue('ptr', '0', 'double') }}}; default: abort('invalid type for setValue: ' + type); } #if SAFE_HEAP } #endif return null; } {{{ maybeExport("getValue") }}} var ALLOC_NORMAL = 0; // Tries to use _malloc() var ALLOC_STACK = 1; // Lives for the duration of the current function call var ALLOC_STATIC = 2; // Cannot be freed var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk var ALLOC_NONE = 4; // Do not allocate {{{ maybeExport('ALLOC_NORMAL') }}} {{{ maybeExport('ALLOC_STACK') }}} {{{ maybeExport('ALLOC_STATIC') }}} {{{ maybeExport('ALLOC_DYNAMIC') }}} {{{ maybeExport('ALLOC_NONE') }}} // allocate(): This is for internal use. You can use it yourself as well, but the interface // is a little tricky (see docs right below). The reason is that it is optimized // for multiple syntaxes to save space in generated code. So you should // normally not use allocate(), and instead allocate memory using _malloc(), // initialize it with setValue(), and so forth. // @slab: An array of data, or a number. If a number, then the size of the block to allocate, // in *bytes* (note that this is sometimes confusing: the next parameter does not // affect this!) // @types: Either an array of types, one for each byte (or 0 if no type at that position), // or a single type which is used for the entire block. This only matters if there // is initial data - if @slab is a number, then this does not matter at all and is // ignored. // @allocator: How to allocate memory, see ALLOC_* function allocate(slab, types, allocator, ptr) { var zeroinit, size; if (typeof slab === 'number') { zeroinit = true; size = slab; } else { zeroinit = false; size = slab.length; } var singleType = typeof types === 'string' ? types : null; var ret; if (allocator == ALLOC_NONE) { ret = ptr; } else { ret = [typeof _malloc === 'function' ? _malloc : Runtime.staticAlloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length)); } if (zeroinit) { var ptr = ret, stop; assert((ret & 3) == 0); stop = ret + (size & ~3); for (; ptr < stop; ptr += 4) { {{{ makeSetValue('ptr', '0', '0', 'i32', null, true) }}}; } stop = ret + size; while (ptr < stop) { {{{ makeSetValue('ptr++', '0', '0', 'i8', null, true) }}}; } return ret; } if (singleType === 'i8') { if (slab.subarray || slab.slice) { HEAPU8.set(slab, ret); } else { HEAPU8.set(new Uint8Array(slab), ret); } return ret; } var i = 0, type, typeSize, previousType; while (i < size) { var curr = slab[i]; if (typeof curr === 'function') { curr = Runtime.getFunctionIndex(curr); } type = singleType || types[i]; if (type === 0) { i++; continue; } #if ASSERTIONS assert(type, 'Must know what type to store in allocate!'); #endif if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later setValue(ret+i, curr, type); // no need to look up size unless type changes, so cache it if (previousType !== type) { typeSize = Runtime.getNativeTypeSize(type); previousType = type; } i += typeSize; } return ret; } {{{ maybeExport('allocate') }}} // Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready function getMemory(size) { if (!staticSealed) return Runtime.staticAlloc(size); if ((typeof _sbrk !== 'undefined' && !_sbrk.called) || !runtimeInitialized) return Runtime.dynamicAlloc(size); return _malloc(size); } {{{ maybeExport('getMemory') }}} function Pointer_stringify(ptr, /* optional */ length) { if (length === 0 || !ptr) return ''; // TODO: use TextDecoder // Find the length, and check for UTF while doing so var hasUtf = 0; var t; var i = 0; while (1) { #if ASSERTIONS assert(ptr + i < TOTAL_MEMORY); #endif t = {{{ makeGetValue('ptr', 'i', 'i8', 0, 1) }}}; hasUtf |= t; if (t == 0 && !length) break; i++; if (length && i == length) break; } if (!length) length = i; var ret = ''; if (hasUtf < 128) { var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack var curr; while (length > 0) { curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK))); ret = ret ? ret + curr : curr; ptr += MAX_CHUNK; length -= MAX_CHUNK; } return ret; } return Module['UTF8ToString'](ptr); } {{{ maybeExport('Pointer_stringify') }}} // Given a pointer 'ptr' to a null-terminated ASCII-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function AsciiToString(ptr) { var str = ''; while (1) { var ch = {{{ makeGetValue('ptr++', 0, 'i8') }}}; if (!ch) return str; str += String.fromCharCode(ch); } } {{{ maybeExport('AsciiToString') }}} // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in ASCII form. The copy will require at most str.length+1 bytes of space in the HEAP. function stringToAscii(str, outPtr) { return writeAsciiToMemory(str, outPtr, false); } {{{ maybeExport('stringToAscii') }}} // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns // a copy of that string as a Javascript String object. function UTF8ArrayToString(u8Array, idx) { var u0, u1, u2, u3, u4, u5; var str = ''; while (1) { // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 u0 = u8Array[idx++]; if (!u0) return str; if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; } u1 = u8Array[idx++] & 63; if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; } u2 = u8Array[idx++] & 63; if ((u0 & 0xF0) == 0xE0) { u0 = ((u0 & 15) << 12) | (u1 << 6) | u2; } else { u3 = u8Array[idx++] & 63; if ((u0 & 0xF8) == 0xF0) { u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3; } else { u4 = u8Array[idx++] & 63; if ((u0 & 0xFC) == 0xF8) { u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4; } else { u5 = u8Array[idx++] & 63; u0 = ((u0 & 1) << 30) | (u1 << 24) | (u2 << 18) | (u3 << 12) | (u4 << 6) | u5; } } } if (u0 < 0x10000) { str += String.fromCharCode(u0); } else { var ch = u0 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } } } {{{ maybeExport('UTF8ArrayToString') }}} // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF8ToString(ptr) { return UTF8ArrayToString({{{ heapAndOffset('HEAPU8', 'ptr') }}}); } {{{ maybeExport('UTF8ToString') }}} // Copies the given Javascript String object 'str' to the given byte array at address 'outIdx', // encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outU8Array: the array to copy to. Each index in this array is assumed to be one 8-byte element. // outIdx: The starting offset in the array to begin the copying. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else. // maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) { if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes. return 0; var startIdx = outIdx; var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator. for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { if (outIdx >= endIdx) break; outU8Array[outIdx++] = u; } else if (u <= 0x7FF) { if (outIdx + 1 >= endIdx) break; outU8Array[outIdx++] = 0xC0 | (u >> 6); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0xFFFF) { if (outIdx + 2 >= endIdx) break; outU8Array[outIdx++] = 0xE0 | (u >> 12); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x1FFFFF) { if (outIdx + 3 >= endIdx) break; outU8Array[outIdx++] = 0xF0 | (u >> 18); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x3FFFFFF) { if (outIdx + 4 >= endIdx) break; outU8Array[outIdx++] = 0xF8 | (u >> 24); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else { if (outIdx + 5 >= endIdx) break; outU8Array[outIdx++] = 0xFC | (u >> 30); outU8Array[outIdx++] = 0x80 | ((u >> 24) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } } // Null-terminate the pointer to the buffer. outU8Array[outIdx] = 0; return outIdx - startIdx; } {{{ maybeExport('stringToUTF8Array') }}} // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8() to compute the exact number of bytes (excluding null terminator) that this function will write. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8(str, outPtr, maxBytesToWrite) { #if ASSERTIONS assert(typeof maxBytesToWrite == 'number', 'stringToUTF8(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!'); #endif return stringToUTF8Array(str, {{{ heapAndOffset('HEAPU8', 'outPtr') }}}, maxBytesToWrite); } {{{ maybeExport('stringToUTF8') }}} // Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF8(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { ++len; } else if (u <= 0x7FF) { len += 2; } else if (u <= 0xFFFF) { len += 3; } else if (u <= 0x1FFFFF) { len += 4; } else if (u <= 0x3FFFFFF) { len += 5; } else { len += 6; } } return len; } {{{ maybeExport('lengthBytesUTF8') }}} // Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF16ToString(ptr) { var i = 0; var str = ''; while (1) { var codeUnit = {{{ makeGetValue('ptr', 'i*2', 'i16') }}}; if (codeUnit == 0) return str; ++i; // fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through. str += String.fromCharCode(codeUnit); } } {{{ maybeExport('UTF16ToString') }}} // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF16 form. The copy will require at most str.length*4+2 bytes of space in the HEAP. // Use the function lengthBytesUTF16() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=2, only the null terminator will be written and nothing else. // maxBytesToWrite<2 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF16(str, outPtr, maxBytesToWrite) { #if ASSERTIONS assert(typeof maxBytesToWrite == 'number', 'stringToUTF16(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!'); #endif // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 2) return 0; maxBytesToWrite -= 2; // Null terminator. var startPtr = outPtr; var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length; for (var i = 0; i < numCharsToWrite; ++i) { // charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP. var codeUnit = str.charCodeAt(i); // possibly a lead surrogate {{{ makeSetValue('outPtr', 0, 'codeUnit', 'i16') }}}; outPtr += 2; } // Null-terminate the pointer to the HEAP. {{{ makeSetValue('outPtr', 0, 0, 'i16') }}}; return outPtr - startPtr; } {{{ maybeExport('stringToUTF16') }}} // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF16(str) { return str.length*2; } {{{ maybeExport('lengthBytesUTF16') }}} function UTF32ToString(ptr) { var i = 0; var str = ''; while (1) { var utf32 = {{{ makeGetValue('ptr', 'i*4', 'i32') }}}; if (utf32 == 0) return str; ++i; // Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing. // See http://unicode.org/faq/utf_bom.html#utf16-3 if (utf32 >= 0x10000) { var ch = utf32 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } else { str += String.fromCharCode(utf32); } } } {{{ maybeExport('UTF32ToString') }}} // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF32 form. The copy will require at most str.length*4+4 bytes of space in the HEAP. // Use the function lengthBytesUTF32() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=4, only the null terminator will be written and nothing else. // maxBytesToWrite<4 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF32(str, outPtr, maxBytesToWrite) { #if ASSERTIONS assert(typeof maxBytesToWrite == 'number', 'stringToUTF32(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!'); #endif // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 4) return 0; var startPtr = outPtr; var endPtr = startPtr + maxBytesToWrite - 4; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); // possibly a lead surrogate if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) { var trailSurrogate = str.charCodeAt(++i); codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF); } {{{ makeSetValue('outPtr', 0, 'codeUnit', 'i32') }}}; outPtr += 4; if (outPtr + 4 > endPtr) break; } // Null-terminate the pointer to the HEAP. {{{ makeSetValue('outPtr', 0, 0, 'i32') }}}; return outPtr - startPtr; } {{{ maybeExport('stringToUTF32') }}} // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF32(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) ++i; // possibly a lead surrogate, so skip over the tail surrogate. len += 4; } return len; } {{{ maybeExport('lengthBytesUTF32') }}} function demangle(func) { var hasLibcxxabi = !!Module['___cxa_demangle']; if (hasLibcxxabi) { try { var buf = _malloc(func.length); writeStringToMemory(func.substr(1), buf); var status = _malloc(4); var ret = Module['___cxa_demangle'](buf, 0, 0, status); if (getValue(status, 'i32') === 0 && ret) { return Pointer_stringify(ret); } // otherwise, libcxxabi failed, we can try ours which may return a partial result } catch(e) { // failure when using libcxxabi, we can try ours which may return a partial result } finally { if (buf) _free(buf); if (status) _free(status); if (ret) _free(ret); } } var i = 3; // params, etc. var basicTypes = { 'v': 'void', 'b': 'bool', 'c': 'char', 's': 'short', 'i': 'int', 'l': 'long', 'f': 'float', 'd': 'double', 'w': 'wchar_t', 'a': 'signed char', 'h': 'unsigned char', 't': 'unsigned short', 'j': 'unsigned int', 'm': 'unsigned long', 'x': 'long long', 'y': 'unsigned long long', 'z': '...' }; var subs = []; var first = true; function dump(x) { //return; if (x) Module.print(x); Module.print(func); var pre = ''; for (var a = 0; a < i; a++) pre += ' '; Module.print (pre + '^'); } function parseNested() { i++; if (func[i] === 'K') i++; // ignore const var parts = []; while (func[i] !== 'E') { if (func[i] === 'S') { // substitution i++; var next = func.indexOf('_', i); var num = func.substring(i, next) || 0; parts.push(subs[num] || '?'); i = next+1; continue; } if (func[i] === 'C') { // constructor parts.push(parts[parts.length-1]); i += 2; continue; } var size = parseInt(func.substr(i)); var pre = size.toString().length; if (!size || !pre) { i--; break; } // counter i++ below us var curr = func.substr(i + pre, size); parts.push(curr); subs.push(curr); i += pre + size; } i++; // skip E return parts; } function parse(rawList, limit, allowVoid) { // main parser limit = limit || Infinity; var ret = '', list = []; function flushList() { return '(' + list.join(', ') + ')'; } var name; if (func[i] === 'N') { // namespaced N-E name = parseNested().join('::'); limit--; if (limit === 0) return rawList ? [name] : name; } else { // not namespaced if (func[i] === 'K' || (first && func[i] === 'L')) i++; // ignore const and first 'L' var size = parseInt(func.substr(i)); if (size) { var pre = size.toString().length; name = func.substr(i + pre, size); i += pre + size; } } first = false; if (func[i] === 'I') { i++; var iList = parse(true); var iRet = parse(true, 1, true); ret += iRet[0] + ' ' + name + '<' + iList.join(', ') + '>'; } else { ret = name; } paramLoop: while (i < func.length && limit-- > 0) { //dump('paramLoop'); var c = func[i++]; if (c in basicTypes) { list.push(basicTypes[c]); } else { switch (c) { case 'P': list.push(parse(true, 1, true)[0] + '*'); break; // pointer case 'R': list.push(parse(true, 1, true)[0] + '&'); break; // reference case 'L': { // literal i++; // skip basic type var end = func.indexOf('E', i); var size = end - i; list.push(func.substr(i, size)); i += size + 2; // size + 'EE' break; } case 'A': { // array var size = parseInt(func.substr(i)); i += size.toString().length; if (func[i] !== '_') throw '?'; i++; // skip _ list.push(parse(true, 1, true)[0] + ' [' + size + ']'); break; } case 'E': break paramLoop; default: ret += '?' + c; break paramLoop; } } } if (!allowVoid && list.length === 1 && list[0] === 'void') list = []; // avoid (void) if (rawList) { if (ret) { list.push(ret + '?'); } return list; } else { return ret + flushList(); } } var parsed = func; try { // Special-case the entry point, since its name differs from other name mangling. if (func == 'Object._main' || func == '_main') { return 'main()'; } if (typeof func === 'number') func = Pointer_stringify(func); if (func[0] !== '_') return func; if (func[1] !== '_') return func; // C function if (func[2] !== 'Z') return func; switch (func[3]) { case 'n': return 'operator new()'; case 'd': return 'operator delete()'; } parsed = parse(); } catch(e) { parsed += '?'; } if (parsed.indexOf('?') >= 0 && !hasLibcxxabi) { Runtime.warnOnce('warning: a problem occurred in builtin C++ name demangling; build with -s DEMANGLE_SUPPORT=1 to link in libcxxabi demangling'); } return parsed; } function demangleAll(text) { return text.replace(/__Z[\w\d_]+/g, function(x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']') }); } function jsStackTrace() { var err = new Error(); if (!err.stack) { // IE10+ special cases: It does have callstack info, but it is only populated if an Error object is thrown, // so try that as a special-case. try { throw new Error(0); } catch(e) { err = e; } if (!err.stack) { return '(no stack trace available)'; } } return err.stack.toString(); } function stackTrace() { return demangleAll(jsStackTrace()); } {{{ maybeExport('stackTrace') }}} // Memory management var PAGE_SIZE = 4096; function alignMemoryPage(x) { if (x % 4096 > 0) { x += (4096 - (x % 4096)); } return x; } var HEAP; var buffer; var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; function updateGlobalBuffer(buf) { Module['buffer'] = buffer = buf; } function updateGlobalBufferViews() { Module['HEAP8'] = HEAP8 = new Int8Array(buffer); Module['HEAP16'] = HEAP16 = new Int16Array(buffer); Module['HEAP32'] = HEAP32 = new Int32Array(buffer); Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer); Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer); Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer); Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer); Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer); } var STATIC_BASE = 0, STATICTOP = 0, staticSealed = false; // static area var STACK_BASE = 0, STACKTOP = 0, STACK_MAX = 0; // stack area var DYNAMIC_BASE = 0, DYNAMICTOP = 0; // dynamic area handled by sbrk #if USE_PTHREADS if (ENVIRONMENT_IS_PTHREAD) { staticSealed = true; // The static memory area has been initialized already in the main thread, pthreads skip this. #if SEPARATE_ASM != 0 importScripts('{{{ SEPARATE_ASM }}}'); // load the separated-out asm.js #endif } #endif #if ALLOW_MEMORY_GROWTH == 0 function abortOnCannotGrowMemory() { abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which adjusts the size at runtime but prevents some optimizations, (3) set Module.TOTAL_MEMORY to a higher value before the program runs, or if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 '); } #else // ALLOW_MEMORY_GROWTH if (!Module['reallocBuffer']) Module['reallocBuffer'] = function(size) { var ret; try { if (ArrayBuffer.transfer) { ret = ArrayBuffer.transfer(buffer, size); } else { var oldHEAP8 = HEAP8; ret = new ArrayBuffer(size); var temp = new Int8Array(ret); temp.set(oldHEAP8); } } catch(e) { return false; } var success = _emscripten_replace_memory(ret); if (!success) return false; return ret; }; #endif function enlargeMemory() { #if USE_PTHREADS abort('Cannot enlarge memory arrays, since compiling with pthreads support enabled (-s USE_PTHREADS=1).'); #else #if ALLOW_MEMORY_GROWTH == 0 #if ABORTING_MALLOC abortOnCannotGrowMemory(); #else return false; // malloc will report failure #endif #else // TOTAL_MEMORY is the current size of the actual array, and DYNAMICTOP is the new top. #if ASSERTIONS assert(DYNAMICTOP >= TOTAL_MEMORY); assert(TOTAL_MEMORY > 4); // So the loop below will not be infinite #endif var OLD_TOTAL_MEMORY = TOTAL_MEMORY; #if EMSCRIPTEN_TRACING // Report old layout one last time _emscripten_trace_report_memory_layout(); #endif var LIMIT = Math.pow(2, 31); // 2GB is a practical maximum, as we use signed ints as pointers // and JS engines seem unhappy to give us 2GB arrays currently if (DYNAMICTOP >= LIMIT) return false; while (TOTAL_MEMORY <= DYNAMICTOP) { // Simple heuristic. if (TOTAL_MEMORY < LIMIT/2) { TOTAL_MEMORY = alignMemoryPage(2*TOTAL_MEMORY); // double until 1GB } else { var last = TOTAL_MEMORY; TOTAL_MEMORY = alignMemoryPage((3*TOTAL_MEMORY + LIMIT)/4); // add smaller increments towards 2GB, which we cannot reach if (TOTAL_MEMORY <= last) return false; } } TOTAL_MEMORY = Math.max(TOTAL_MEMORY, 16*1024*1024); if (TOTAL_MEMORY >= LIMIT) return false; #if ASSERTIONS Module.printErr('Warning: Enlarging memory arrays, this is not fast! ' + [OLD_TOTAL_MEMORY, TOTAL_MEMORY]); #endif #if EMSCRIPTEN_TRACING _emscripten_trace_js_log_message("Emscripten", "Enlarging memory arrays from " + OLD_TOTAL_MEMORY + " to " + TOTAL_MEMORY); // And now report the new layout _emscripten_trace_report_memory_layout(); #endif #if ASSERTIONS var start = Date.now(); #endif var replacement = Module['reallocBuffer'](TOTAL_MEMORY); if (!replacement) return false; // everything worked updateGlobalBuffer(replacement); updateGlobalBufferViews(); #if ASSERTIONS Module.printErr('enlarged memory arrays from ' + OLD_TOTAL_MEMORY + ' to ' + TOTAL_MEMORY + ', took ' + (Date.now() - start) + ' ms (has ArrayBuffer.transfer? ' + (!!ArrayBuffer.transfer) + ')'); #endif return true; #endif // ALLOW_MEMORY_GROWTH #endif // USE_PTHREADS } #if ALLOW_MEMORY_GROWTH var byteLength; try { byteLength = Function.prototype.call.bind(Object.getOwnPropertyDescriptor(ArrayBuffer.prototype, 'byteLength').get); byteLength(new ArrayBuffer(4)); // can fail on older ie } catch(e) { // can fail on older node/v8 byteLength = function(buffer) { return buffer.byteLength; }; } #endif var TOTAL_STACK = Module['TOTAL_STACK'] || {{{ TOTAL_STACK }}}; var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || {{{ TOTAL_MEMORY }}}; var totalMemory = 64*1024; while (totalMemory < TOTAL_MEMORY || totalMemory < 2*TOTAL_STACK) { if (totalMemory < 16*1024*1024) { totalMemory *= 2; } else { totalMemory += 16*1024*1024 } } #if ALLOW_MEMORY_GROWTH totalMemory = Math.max(totalMemory, 16*1024*1024); #endif if (totalMemory !== TOTAL_MEMORY) { #if ASSERTIONS Module.printErr('increasing TOTAL_MEMORY to ' + totalMemory + ' to be compliant with the asm.js spec (and given that TOTAL_STACK=' + TOTAL_STACK + ')'); #endif TOTAL_MEMORY = totalMemory; } // Initialize the runtime's memory // check for full engine support (use string 'subarray' to avoid closure compiler confusion) assert(typeof Int32Array !== 'undefined' && typeof Float64Array !== 'undefined' && !!(new Int32Array(1)['subarray']) && !!(new Int32Array(1)['set']), 'JS engine does not provide full typed array support'); #if IN_TEST_HARNESS #if USE_PTHREADS == 1 if (typeof SharedArrayBuffer === 'undefined' || typeof Atomics === 'undefined') { xhr = new XMLHttpRequest(); xhr.open('GET', 'http://localhost:8888/report_result?skipped:%20SharedArrayBuffer%20is%20not%20supported!'); xhr.send(); setTimeout(function() { window.close() }, 2000); } #endif #endif #if USE_PTHREADS if (typeof SharedArrayBuffer !== 'undefined') { if (!ENVIRONMENT_IS_PTHREAD) buffer = new SharedArrayBuffer(TOTAL_MEMORY); // Currently SharedArrayBuffer does not have a slice() operation, so polyfill it in. // Adapted from https://github.com/ttaubert/node-arraybuffer-slice, (c) 2014 Tim Taubert // arraybuffer-slice may be freely distributed under the MIT license. (function (undefined) { "use strict"; function clamp(val, length) { val = (val|0) || 0; if (val < 0) return Math.max(val + length, 0); return Math.min(val, length); } if (typeof SharedArrayBuffer !== 'undefined' && !SharedArrayBuffer.prototype.slice) { SharedArrayBuffer.prototype.slice = function (from, to) { var length = this.byteLength; var begin = clamp(from, length); var end = length; if (to !== undefined) end = clamp(to, length); if (begin > end) return new ArrayBuffer(0); var num = end - begin; var target = new ArrayBuffer(num); var targetArray = new Uint8Array(target); var sourceArray = new Uint8Array(this, begin, num); targetArray.set(sourceArray); return target; }; } })(); } else { if (!ENVIRONMENT_IS_PTHREAD) buffer = new ArrayBuffer(TOTAL_MEMORY); } updateGlobalBufferViews(); if (typeof Atomics === 'undefined') { // Polyfill singlethreaded atomics ops from http://lars-t-hansen.github.io/ecmascript_sharedmem/shmem.html#Atomics.add // No thread-safety needed since we don't have multithreading support. Atomics = {}; Atomics['add'] = function(t, i, v) { var w = t[i]; t[i] += v; return w; } Atomics['and'] = function(t, i, v) { var w = t[i]; t[i] &= v; return w; } Atomics['compareExchange'] = function(t, i, e, r) { var w = t[i]; if (w == e) t[i] = r; return w; } Atomics['futexWait'] = function(t, i, v, o) { if (t[i] != v) abort('Multithreading is not supported, cannot sleep to wait for futex!'); } Atomics['futexWake'] = function(t, i, c) {} Atomics['futexWakeOrRequeue'] = function(t, i1, c, i2, v) {} Atomics['isLockFree'] = function(s) { return true; } Atomics['load'] = function(t, i) { return t[i]; } Atomics['or'] = function(t, i, v) { var w = t[i]; t[i] |= v; return w; } Atomics['store'] = function(t, i, v) { t[i] = v; return v; } Atomics['sub'] = function(t, i, v) { var w = t[i]; t[i] -= v; return w; } Atomics['xor'] = function(t, i, v) { var w = t[i]; t[i] ^= v; return w; } } #else // USE_PTHREADS #if SPLIT_MEMORY == 0 // Use a provided buffer, if there is one, or else allocate a new one if (Module['buffer']) { buffer = Module['buffer']; assert(buffer.byteLength === TOTAL_MEMORY, 'provided buffer should be ' + TOTAL_MEMORY + ' bytes, but it is ' + buffer.byteLength); } else { buffer = new ArrayBuffer(TOTAL_MEMORY); } updateGlobalBufferViews(); #else // SPLIT_MEMORY // make sure total memory is a multiple of the split memory size var SPLIT_MEMORY = {{{ SPLIT_MEMORY }}}; var SPLIT_MEMORY_MASK = SPLIT_MEMORY - 1; var SPLIT_MEMORY_BITS = -1; var ALLOW_MEMORY_GROWTH = {{{ ALLOW_MEMORY_GROWTH }}}; var ABORTING_MALLOC = {{{ ABORTING_MALLOC }}}; Module['SPLIT_MEMORY'] = SPLIT_MEMORY; totalMemory = TOTAL_MEMORY; if (totalMemory % SPLIT_MEMORY) { totalMemory += SPLIT_MEMORY - (totalMemory % SPLIT_MEMORY); } if (totalMemory === SPLIT_MEMORY) totalMemory *= 2; if (totalMemory !== TOTAL_MEMORY) { TOTAL_MEMORY = totalMemory; #if ASSERTIONS == 2 Module.printErr('increasing TOTAL_MEMORY to ' + TOTAL_MEMORY + ' to be a multiple>1 of the split memory size ' + SPLIT_MEMORY + ')'); #endif } var buffers = [], HEAP8s = [], HEAP16s = [], HEAP32s = [], HEAPU8s = [], HEAPU16s = [], HEAPU32s = [], HEAPF32s = [], HEAPF64s = []; // Allocates a split chunk, a range of memory of size SPLIT_MEMORY. Generally data is not provided, and a new // buffer is allocated, this is what happens when malloc works. However, you can provide your own buffer, // which then lets you access it at address [ i*SPLIT_MEMORY, (i+1)*SPLIT_MEMORY ). // The function returns true if it succeeds. It can also throw an exception if no data is provided and // the browser fails to allocate the buffer. function allocateSplitChunk(i, data) { if (buffers[i]) return false; // already taken var curr = data ? data : new ArrayBuffer(SPLIT_MEMORY); assert(curr instanceof ArrayBuffer); buffers[i] = curr; HEAP8s[i] = new Int8Array(curr); HEAP16s[i] = new Int16Array(curr); HEAP32s[i] = new Int32Array(curr); HEAPU8s[i] = new Uint8Array(curr); HEAPU16s[i] = new Uint16Array(curr); HEAPU32s[i] = new Uint32Array(curr); HEAPF32s[i] = new Float32Array(curr); HEAPF64s[i] = new Float64Array(curr); return true; } function freeSplitChunk(i) { assert(buffers[i] && HEAP8s[i]); assert(i > 0); // cannot free the first chunk buffers[i] = HEAP8s[i] = HEAP16s[i] = HEAP32s[i] = HEAPU8s[i] = HEAPU16s[i] = HEAPU32s[i] = HEAPF32s[i] = HEAPF64s[i] = null; } (function() { for (var i = 0; i < TOTAL_MEMORY / SPLIT_MEMORY; i++) { buffers[i] = HEAP8s[i] = HEAP16s[i] = HEAP32s[i] = HEAPU8s[i] = HEAPU16s[i] = HEAPU32s[i] = HEAPF32s[i] = HEAPF64s[i] = null; } var temp = SPLIT_MEMORY; while (temp) { temp >>= 1; SPLIT_MEMORY_BITS++; } allocateSplitChunk(0); // first chunk is for core runtime, static, stack, etc., always must be initialized // support HEAP8.subarray etc. var SHIFT_TABLE = [0, 0, 1, 0, 2, 0, 0, 0, 3]; function fake(real) { var bytes = real[0].BYTES_PER_ELEMENT; var shifts = SHIFT_TABLE[bytes]; assert(shifts > 0 || bytes == 1); var that = { BYTES_PER_ELEMENT: bytes, set: function(array, offset) { if (offset === undefined) offset = 0; // potentially split over multiple chunks while (array.length > 0) { var chunk = offset >> SPLIT_MEMORY_BITS; var relative = offset & SPLIT_MEMORY_MASK; if (relative + (array.length << shifts) < SPLIT_MEMORY) { real[chunk].set(array, relative); // all fits in this chunk break; } else { var currSize = SPLIT_MEMORY - relative; assert(currSize % that.BYTES_PER_ELEMENT === 0); var lastIndex = currSize >> shifts; real[chunk].set(array.subarray(0, lastIndex), relative); // increments array = array.subarray(lastIndex); offset += currSize; } } }, subarray: function(from, to) { from = from << shifts; var start = from >> SPLIT_MEMORY_BITS; if (to === undefined) { to = (start + 1) << SPLIT_MEMORY_BITS; } else { to = to << shifts; } to = Math.max(from, to); // if to is smaller, we'll get nothing anyway, same as to == from if (from < to) { var end = (to - 1) >> SPLIT_MEMORY_BITS; // -1, since we do not actually read the last address assert(start === end, 'subarray cannot span split chunks'); } if (to > from && (to & SPLIT_MEMORY_MASK) == 0) { // avoid the mask on the next line giving 0 for the end return real[start].subarray((from & SPLIT_MEMORY_MASK) >> shifts); // just return to the end of the chunk } return real[start].subarray((from & SPLIT_MEMORY_MASK) >> shifts, (to & SPLIT_MEMORY_MASK) >> shifts); }, buffer: { slice: function(from, to) { assert(to, 'TODO: this is an actual copy, so we could support a slice across multiple chunks'); return new Uint8Array(HEAPU8.subarray(from, to)).buffer; }, }, }; return that; } HEAP8 = fake(HEAP8s); HEAP16 = fake(HEAP16s); HEAP32 = fake(HEAP32s); HEAPU8 = fake(HEAPU8s); HEAPU16 = fake(HEAPU16s); HEAPU32 = fake(HEAPU32s); HEAPF32 = fake(HEAPF32s); HEAPF64 = fake(HEAPF64s); })(); #if SAFE_SPLIT_MEMORY function checkPtr(ptr, shifts) { if (ptr <= 0) abort('segmentation fault storing to address ' + ptr); if (ptr !== ((ptr >> shifts) << shifts)) abort('alignment error storing to address ' + ptr + ', which was expected to be aligned to a shift of ' + shifts); if ((ptr >> SPLIT_MEMORY_BITS) !== (ptr + Math.pow(2, shifts) - 1 >> SPLIT_MEMORY_BITS)) abort('segmentation fault, write spans split chunks ' + [ptr, shifts]); } #endif function get8(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 0); #endif return HEAP8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] | 0; } function get16(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 1); #endif return HEAP16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] | 0; } function get32(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 2); #endif return HEAP32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] | 0; } function getU8(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 0); #endif return HEAPU8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] | 0; } function getU16(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 1); #endif return HEAPU16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] | 0; } function getU32(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 2); #endif return HEAPU32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] | 0; } function getF32(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 2); #endif return +HEAPF32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2]; } function getF64(ptr) { ptr = ptr | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 3); #endif return +HEAPF64s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 3]; } function set8(ptr, value) { ptr = ptr | 0; value = value | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 0); #endif HEAP8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] = value; } function set16(ptr, value) { ptr = ptr | 0; value = value | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 1); #endif HEAP16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] = value; } function set32(ptr, value) { ptr = ptr | 0; value = value | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 2); #endif HEAP32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] = value; } function setU8(ptr, value) { ptr = ptr | 0; value = value | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 0); #endif HEAPU8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] = value; } function setU16(ptr, value) { ptr = ptr | 0; value = value | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 1); #endif HEAPU16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] = value; } function setU32(ptr, value) { ptr = ptr | 0; value = value | 0; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 2); #endif HEAPU32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] = value; } function setF32(ptr, value) { ptr = ptr | 0; value = +value; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 2); #endif HEAPF32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] = value; } function setF64(ptr, value) { ptr = ptr | 0; value = +value; #if SAFE_SPLIT_MEMORY checkPtr(ptr, 3); #endif HEAPF64s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 3] = value; } #endif // SPLIT_MEMORY #endif // USE_PTHREADS // Endianness check (note: assumes compiler arch was little-endian) #if SAFE_SPLIT_MEMORY == 0 HEAP32[0] = 255; assert(HEAPU8[0] === 255 && HEAPU8[3] === 0, 'Typed arrays 2 must be run on a little-endian system'); #endif Module['HEAP'] = HEAP; Module['buffer'] = buffer; Module['HEAP8'] = HEAP8; Module['HEAP16'] = HEAP16; Module['HEAP32'] = HEAP32; Module['HEAPU8'] = HEAPU8; Module['HEAPU16'] = HEAPU16; Module['HEAPU32'] = HEAPU32; Module['HEAPF32'] = HEAPF32; Module['HEAPF64'] = HEAPF64; function callRuntimeCallbacks(callbacks) { while(callbacks.length > 0) { var callback = callbacks.shift(); if (typeof callback == 'function') { callback(); continue; } var func = callback.func; if (typeof func === 'number') { if (callback.arg === undefined) { Runtime.dynCall('v', func); } else { Runtime.dynCall('vi', func, [callback.arg]); } } else { func(callback.arg === undefined ? null : callback.arg); } } } var __ATPRERUN__ = []; // functions called before the runtime is initialized var __ATINIT__ = []; // functions called during startup var __ATMAIN__ = []; // functions called when main() is to be run var __ATEXIT__ = []; // functions called during shutdown var __ATPOSTRUN__ = []; // functions called after the runtime has exited var runtimeInitialized = false; var runtimeExited = false; #if USE_PTHREADS if (ENVIRONMENT_IS_PTHREAD) runtimeInitialized = true; // The runtime is hosted in the main thread, and bits shared to pthreads via SharedArrayBuffer. No need to init again in pthread. #endif function preRun() { #if USE_PTHREADS if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread. #endif // compatibility - merge in anything from Module['preRun'] at this time if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; while (Module['preRun'].length) { addOnPreRun(Module['preRun'].shift()); } } callRuntimeCallbacks(__ATPRERUN__); } function ensureInitRuntime() { #if USE_PTHREADS if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread. #endif if (runtimeInitialized) return; runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function preMain() { #if USE_PTHREADS if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread. #endif callRuntimeCallbacks(__ATMAIN__); } function exitRuntime() { #if USE_PTHREADS if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread. #endif callRuntimeCallbacks(__ATEXIT__); runtimeExited = true; } function postRun() { #if USE_PTHREADS if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread. #endif // compatibility - merge in anything from Module['postRun'] at this time if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length) { addOnPostRun(Module['postRun'].shift()); } } callRuntimeCallbacks(__ATPOSTRUN__); } function addOnPreRun(cb) { __ATPRERUN__.unshift(cb); } {{{ maybeExport('addOnPreRun') }}} function addOnInit(cb) { __ATINIT__.unshift(cb); } {{{ maybeExport('addOnInit') }}} function addOnPreMain(cb) { __ATMAIN__.unshift(cb); } {{{ maybeExport('addOnPreMain') }}} function addOnExit(cb) { __ATEXIT__.unshift(cb); } {{{ maybeExport('addOnExit') }}} function addOnPostRun(cb) { __ATPOSTRUN__.unshift(cb); } {{{ maybeExport('addOnPostRun') }}} // Tools function intArrayFromString(stringy, dontAddNull, length /* optional */) { var len = length > 0 ? length : lengthBytesUTF8(stringy)+1; var u8array = new Array(len); var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length); if (dontAddNull) u8array.length = numBytesWritten; return u8array; } {{{ maybeExport('intArrayFromString') }}} function intArrayToString(array) { var ret = []; for (var i = 0; i < array.length; i++) { var chr = array[i]; if (chr > 0xFF) { #if ASSERTIONS assert(false, 'Character code ' + chr + ' (' + String.fromCharCode(chr) + ') at offset ' + i + ' not in 0x00-0xFF.'); #endif chr &= 0xFF; } ret.push(String.fromCharCode(chr)); } return ret.join(''); } {{{ maybeExport('intArrayToString') }}} function writeStringToMemory(string, buffer, dontAddNull) { var array = intArrayFromString(string, dontAddNull); var i = 0; while (i < array.length) { var chr = array[i]; {{{ makeSetValue('buffer', 'i', 'chr', 'i8') }}}; i = i + 1; } } {{{ maybeExport('writeStringToMemory') }}} function writeArrayToMemory(array, buffer) { for (var i = 0; i < array.length; i++) { {{{ makeSetValue('buffer++', 0, 'array[i]', 'i8') }}}; } } {{{ maybeExport('writeArrayToMemory') }}} function writeAsciiToMemory(str, buffer, dontAddNull) { for (var i = 0; i < str.length; ++i) { #if ASSERTIONS assert(str.charCodeAt(i) === str.charCodeAt(i)&0xff); #endif {{{ makeSetValue('buffer++', 0, 'str.charCodeAt(i)', 'i8') }}}; } // Null-terminate the pointer to the HEAP. if (!dontAddNull) {{{ makeSetValue('buffer', 0, 0, 'i8') }}}; } {{{ maybeExport('writeAsciiToMemory') }}} {{{ unSign }}} {{{ reSign }}} #if USE_PTHREADS // Atomics.exchange is not yet implemented in the spec, so polyfill that in via compareExchange in the meanwhile. // TODO: Keep an eye out for the opportunity to remove this once Atomics.exchange is available. if (typeof Atomics !== 'undefined' && !Atomics['exchange']) { Atomics['exchange'] = function(heap, index, val) { var oldVal, oldVal2; do { oldVal = Atomics['load'](heap, index); oldVal2 = Atomics['compareExchange'](heap, index, oldVal, val); } while(oldVal != oldVal2); return oldVal; } } #endif // check for imul support, and also for correctness ( https://bugs.webkit.org/show_bug.cgi?id=126345 ) if (!Math['imul'] || Math['imul'](0xffffffff, 5) !== -5) Math['imul'] = function imul(a, b) { var ah = a >>> 16; var al = a & 0xffff; var bh = b >>> 16; var bl = b & 0xffff; return (al*bl + ((ah*bl + al*bh) << 16))|0; }; Math.imul = Math['imul']; #if PRECISE_F32 #if PRECISE_F32 == 1 if (!Math['fround']) { var froundBuffer = new Float32Array(1); Math['fround'] = function(x) { froundBuffer[0] = x; return froundBuffer[0] }; } #else // 2 if (!Math['fround']) Math['fround'] = function(x) { return x }; #endif Math.fround = Math['fround']; #else #if SIMD if (!Math['fround']) Math['fround'] = function(x) { return x }; #endif #endif if (!Math['clz32']) Math['clz32'] = function(x) { x = x >>> 0; for (var i = 0; i < 32; i++) { if (x & (1 << (31 - i))) return i; } return 32; }; Math.clz32 = Math['clz32'] var Math_abs = Math.abs; var Math_cos = Math.cos; var Math_sin = Math.sin; var Math_tan = Math.tan; var Math_acos = Math.acos; var Math_asin = Math.asin; var Math_atan = Math.atan; var Math_atan2 = Math.atan2; var Math_exp = Math.exp; var Math_log = Math.log; var Math_sqrt = Math.sqrt; var Math_ceil = Math.ceil; var Math_floor = Math.floor; var Math_pow = Math.pow; var Math_imul = Math.imul; var Math_fround = Math.fround; var Math_min = Math.min; var Math_clz32 = Math.clz32; // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // PRE_RUN_ADDITIONS (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyWatcher = null; var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled #if ASSERTIONS var runDependencyTracking = {}; #endif function getUniqueRunDependency(id) { #if ASSERTIONS var orig = id; while (1) { if (!runDependencyTracking[id]) return id; id = orig + Math.random(); } #endif return id; } function addRunDependency(id) { runDependencies++; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } #if ASSERTIONS if (id) { assert(!runDependencyTracking[id]); runDependencyTracking[id] = 1; if (runDependencyWatcher === null && typeof setInterval !== 'undefined') { // Check for missing dependencies every few seconds runDependencyWatcher = setInterval(function() { if (ABORT) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; return; } var shown = false; for (var dep in runDependencyTracking) { if (!shown) { shown = true; Module.printErr('still waiting on run dependencies:'); } Module.printErr('dependency: ' + dep); } if (shown) { Module.printErr('(end of list)'); } }, 10000); } } else { Module.printErr('warning: run dependency added without ID'); } #endif } {{{ maybeExport('addRunDependency') }}} function removeRunDependency(id) { runDependencies--; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } #if ASSERTIONS if (id) { assert(runDependencyTracking[id]); delete runDependencyTracking[id]; } else { Module.printErr('warning: run dependency removed without ID'); } #endif if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } if (dependenciesFulfilled) { var callback = dependenciesFulfilled; dependenciesFulfilled = null; callback(); // can add another dependenciesFulfilled } } } {{{ maybeExport('removeRunDependency') }}} Module["preloadedImages"] = {}; // maps url to image data Module["preloadedAudios"] = {}; // maps url to audio data #if PGO var PGOMonitor = { called: {}, dump: function() { var dead = []; for (var i = 0; i < this.allGenerated.length; i++) { var func = this.allGenerated[i]; if (!this.called[func]) dead.push(func); } Module.print('-s DEAD_FUNCTIONS=\'' + JSON.stringify(dead) + '\'\n'); } }; Module['PGOMonitor'] = PGOMonitor; __ATEXIT__.push(function() { PGOMonitor.dump() }); addOnPreRun(function() { addRunDependency('pgo') }); #endif #if RELOCATABLE {{{ (function() { // add in RUNTIME_LINKED_LIBS, if provided if (RUNTIME_LINKED_LIBS.length > 0) { return "if (!Module['dynamicLibraries']) Module['dynamicLibraries'] = [];\n" + "Module['dynamicLibraries'] = " + JSON.stringify(RUNTIME_LINKED_LIBS) + ".concat(Module['dynamicLibraries']);\n"; } return ''; })() }}} addOnPreRun(function() { if (Module['dynamicLibraries']) { Module['dynamicLibraries'].forEach(function(lib) { Runtime.loadDynamicLibrary(lib); }); } asm['runPostSets'](); }); #if ASSERTIONS function lookupSymbol(ptr) { // for a pointer, print out all symbols that resolve to it var ret = []; for (var i in Module) { if (Module[i] === ptr) ret.push(i); } print(ptr + ' is ' + ret); } #endif #endif var memoryInitializer = null; #if USE_PTHREADS #if PTHREAD_HINT_NUM_CORES < 0 if (!ENVIRONMENT_IS_PTHREAD) addOnPreRun(function() { addRunDependency('pthreads_querycores'); var bg = document.createElement('div'); bg.style = "position: absolute; top: 0%; left: 0%; width: 100%; height: 100%; background-color: black; z-index:1001; -moz-opacity: 0.8; opacity:.80; filter: alpha(opacity=80);"; var div = document.createElement('div'); var default_num_cores = navigator.hardwareConcurrency || 4; var hwConcurrency = navigator.hardwareConcurrency ? ("says " + navigator.hardwareConcurrency) : "is not available"; var html = '
Thread setup

Number of logical cores:
(navigator.hardwareConcurrency ' + hwConcurrency + ')
'; #if PTHREAD_POOL_SIZE < 0 html += 'PThread pool size:
'; #endif html += '
'; div.innerHTML = html; div.style = 'position: absolute; top: 35%; left: 35%; width: 30%; height: 150px; padding: 16px; border: 16px solid gray; background-color: white; z-index:1002; overflow: auto;'; document.body.appendChild(bg); document.body.appendChild(div); var goButton = document.getElementById('thread_setup_button_go'); goButton.onclick = function() { var num_logical_cores = parseInt(document.getElementById('thread_setup_num_logical_cores').value); _emscripten_force_num_logical_cores(num_logical_cores); #if PTHREAD_POOL_SIZE < 0 var pthread_pool_size = parseInt(document.getElementById('thread_setup_pthread_pool_size').value); PThread.allocateUnusedWorkers(pthread_pool_size, function() { removeRunDependency('pthreads_querycores'); }); #else removeRunDependency('pthreads_querycores'); #endif document.body.removeChild(bg); document.body.removeChild(div); } }); #endif #endif #if PTHREAD_POOL_SIZE > 0 // To work around https://bugzilla.mozilla.org/show_bug.cgi?id=1049079, warm up a worker pool before starting up the application. if (!ENVIRONMENT_IS_PTHREAD) addOnPreRun(function() { if (typeof SharedArrayBuffer !== 'undefined') { addRunDependency('pthreads'); PThread.allocateUnusedWorkers({{{PTHREAD_POOL_SIZE}}}, function() { removeRunDependency('pthreads'); }); }}); #endif // === Body ===