# This file is a part of Julia. License is MIT: https://julialang.org/license # DO NOT ALTER ORDER OR SPACING OF METHODS BELOW const lineoffset = @__LINE__ ambig(x, y) = 1 ambig(x::Integer, y) = 2 ambig(x, y::Integer) = 3 ambig(x::Int, y::Int) = 4 ambig(x::Number, y) = 5 # END OF LINE NUMBER SENSITIVITY # For curmod_* include("testenv.jl") ambigs = Any[[], [3], [2,5], [], [3]] mt = methods(ambig) getline(m::Method) = m.line - lineoffset for m in mt ln = getline(m) atarget = ambigs[ln] if isempty(atarget) @test m.ambig === nothing else aln = Int[getline(a) for a in m.ambig] @test sort(aln) == atarget end end @test length(methods(ambig)) == 5 @test length(Base.methods_including_ambiguous(ambig, Tuple)) == 5 @test length(methods(ambig, (Int, Int))) == 1 @test length(methods(ambig, (UInt8, Int))) == 0 @test length(Base.methods_including_ambiguous(ambig, (UInt8, Int))) == 2 @test ambig("hi", "there") == 1 @test ambig(3.1, 3.2) == 5 @test ambig(3, 4) == 4 @test_throws MethodError ambig(0x03, 4) @test_throws MethodError ambig(0x03, 4) # test that not inserted into cache # Ensure it still works with potential inlining callambig(x, y) = ambig(x, y) @test_throws MethodError callambig(0x03, 4) # Printing ambiguity errors let err = try ambig(0x03, 4) catch _e_ _e_ end io = IOBuffer() Base.showerror(io, err) lines = split(String(take!(io)), '\n') ambig_checkline(str) = startswith(str, " ambig(x, y::Integer) in $curmod_str at") || startswith(str, " ambig(x::Integer, y) in $curmod_str at") @test ambig_checkline(lines[2]) @test ambig_checkline(lines[3]) @test lines[4] == "Possible fix, define" @test lines[5] == " ambig(::Integer, ::Integer)" end ## Other ways of accessing functions # Test that non-ambiguous cases work let io = IOBuffer() @test precompile(ambig, (Int, Int)) == true cf = cfunction(ambig, Int, Tuple{Int, Int}) @test ccall(cf, Int, (Int, Int), 1, 2) == 4 @test length(code_lowered(ambig, (Int, Int))) == 1 @test length(code_typed(ambig, (Int, Int))) == 1 code_llvm(io, ambig, (Int, Int)) code_native(io, ambig, (Int, Int)) end # Test that ambiguous cases fail appropriately let io = IOBuffer() @test precompile(ambig, (UInt8, Int)) == false cf = cfunction(ambig, Int, Tuple{UInt8, Int}) # test for a crash (doesn't throw an error) @test_throws MethodError ccall(cf, Int, (UInt8, Int), 1, 2) @test_throws(ErrorException("no unique matching method found for the specified argument types"), which(ambig, (UInt8, Int))) @test_throws(ErrorException("no unique matching method found for the specified argument types"), code_llvm(io, ambig, (UInt8, Int))) @test_throws(ErrorException("no unique matching method found for the specified argument types"), code_native(io, ambig, (UInt8, Int))) end # Method overwriting doesn't destroy ambiguities @test_throws MethodError ambig(2, 0x03) ambig(x, y::Integer) = 3 @test_throws MethodError ambig(2, 0x03) # Method overwriting by an ambiguity should also invalidate the method cache (#21963) ambig(x::Union{Char, Int8}) = 'r' @test ambig('c') == 'r' @test ambig(Int8(1)) == 'r' @test_throws MethodError ambig(Int16(1)) ambig(x::Union{Char, Int16}) = 's' @test_throws MethodError ambig('c') @test ambig(Int8(1)) == 'r' @test ambig(Int16(1)) == 's' # Automatic detection of ambiguities module Ambig1 ambig(x, y) = 1 ambig(x::Integer, y) = 2 ambig(x, y::Integer) = 3 end ambs = detect_ambiguities(Ambig1) @test length(ambs) == 1 module Ambig2 ambig(x, y) = 1 ambig(x::Integer, y) = 2 ambig(x, y::Integer) = 3 ambig(x::Number, y) = 4 end ambs = detect_ambiguities(Ambig2) @test length(ambs) == 2 module Ambig3 ambig(x, y) = 1 ambig(x::Integer, y) = 2 ambig(x, y::Integer) = 3 ambig(x::Int, y::Int) = 4 end ambs = detect_ambiguities(Ambig3) @test length(ambs) == 1 module Ambig4 ambig(x, y) = 1 ambig(x::Int, y) = 2 ambig(x, y::Int) = 3 ambig(x::Int, y::Int) = 4 end ambs = detect_ambiguities(Ambig4) @test length(ambs) == 0 module Ambig5 ambig(x::Int8, y) = 1 ambig(x::Integer, y) = 2 ambig(x, y::Int) = 3 end ambs = detect_ambiguities(Ambig5) @test length(ambs) == 2 # Test that Core and Base are free of ambiguities # not using isempty so this prints more information when it fails @test detect_ambiguities(Core, Base; imported=true, recursive=true, ambiguous_bottom=false) == [] # some ambiguities involving Union{} type parameters are expected, but not required @test !isempty(detect_ambiguities(Core, Base; imported=true, ambiguous_bottom=true)) amb_1(::Int8, ::Int) = 1 amb_1(::Integer, x) = 2 amb_1(x, ::Int) = 3 # if there is an ambiguity with some methods and not others, `methods` # should return just the non-ambiguous ones, i.e. the ones that could actually # be called. @test length(methods(amb_1, Tuple{Integer, Int})) == 1 amb_2(::Int, y) = 1 amb_2(x, ::Int) = 2 amb_2(::Int8, y) = 3 @test length(methods(amb_2)) == 3 # make sure no duplicates amb_3(::Int8, ::Int8) = 1 amb_3(::Int16, ::Int16) = 2 amb_3(::Integer, ::Integer) = 3 amb_3(::Integer, x) = 4 amb_3(x, ::Integer) = 5 # ambiguous definitions exist, but are covered by multiple more specific definitions let ms = methods(amb_3).ms @test !Base.isambiguous(ms[4], ms[5]) end amb_4(::Int8, ::Int8) = 1 amb_4(::Int16, ::Int16) = 2 amb_4(::Integer, x) = 4 amb_4(x, ::Integer) = 5 # as above, but without sufficient definition coverage let ms = methods(amb_4).ms @test Base.isambiguous(ms[3], ms[4]) end g16493(x::T, y::Integer) where {T<:Number} = 0 g16493(x::Complex{T}, y) where {T} = 1 let ms = methods(g16493, (Complex, Any)) @test length(ms) == 1 @test first(ms).sig == (Tuple{typeof(g16493), Complex{T}, Any} where T) end # issue #17350 module Ambig6 struct ScaleMinMax{To,From} end map1(mapi::ScaleMinMax{To,From}, val::From) where {To<:Union{Float32,Float64},From<:Real} = 1 map1(mapi::ScaleMinMax{To,From}, val::Union{Real,Complex}) where {To<:Union{Float32,Float64},From<:Real} = 2 end @test isempty(detect_ambiguities(Ambig6)) module Ambig7 struct T end (::T)(x::Int8, y) = 1 (::T)(x, y::Int8) = 2 end @test length(detect_ambiguities(Ambig7)) == 1 module Ambig17648 struct MyArray{T,N} <: AbstractArray{T,N} data::Array{T,N} end foo(::Type{Array{T,N}}, A::MyArray{T,N}) where {T,N} = A.data foo(::Type{Array{T,N}}, A::MyArray{T,N}) where {T<:AbstractFloat,N} = A.data foo(::Type{Array{S,N}}, A::MyArray{T,N}) where {S<:AbstractFloat,N,T<:AbstractFloat} = copy!(Array{S}(uninitialized, unsize(A)), A.data) foo(::Type{Array{S,N}}, A::AbstractArray{T,N}) where {S<:AbstractFloat,N,T<:AbstractFloat} = copy!(Array{S}(uninitialized, size(A)), A) end @test isempty(detect_ambiguities(Ambig17648)) module Ambig8 using Base: DimsInteger, Indices g18307(::Union{Indices,Dims}, I::AbstractVector{T}...) where {T<:Integer} = 1 g18307(::DimsInteger) = 2 g18307(::DimsInteger, I::Integer...) = 3 end try # want this to be a test_throws MethodError, but currently it's not (see #18307) Ambig8.g18307((1,)) catch err if isa(err, MethodError) error("Test correctly returned a MethodError, please change to @test_throws MethodError") else rethrow(err) end end module Ambig9 f(x::Complex{<:Integer}) = 1 f(x::Complex{<:Rational}) = 2 end @test !Base.isambiguous(methods(Ambig9.f)..., ambiguous_bottom=false) @test Base.isambiguous(methods(Ambig9.f)..., ambiguous_bottom=true) @test !Base.isambiguous(methods(Ambig9.f)...) @test length(detect_ambiguities(Ambig9, ambiguous_bottom=false)) == 0 @test length(detect_ambiguities(Ambig9, ambiguous_bottom=true)) == 1 @test length(detect_ambiguities(Ambig9)) == 0 # Test that Core and Base are free of UndefVarErrors # not using isempty so this prints more information when it fails @testset "detect_unbound_args in Base and Core" begin # TODO: review this list and remove everything between test_broken and test let need_to_handle_undef_sparam = Set{Method}(detect_unbound_args(Core; recursive=true)) pop!(need_to_handle_undef_sparam, which(Core.Inference.eltype, Tuple{Type{Tuple{Vararg{E}}} where E})) pop!(need_to_handle_undef_sparam, which(Core.Inference.eltype, Tuple{Type{Tuple{Any}}})) @test_broken need_to_handle_undef_sparam == Set() pop!(need_to_handle_undef_sparam, which(Core.Inference.cat, Tuple{Any, AbstractArray})) @test need_to_handle_undef_sparam == Set() end let need_to_handle_undef_sparam = Set{Method}(detect_unbound_args(Base; recursive=true)) pop!(need_to_handle_undef_sparam, which(Base._totuple, (Type{Tuple{Vararg{E}}} where E, Any, Any))) pop!(need_to_handle_undef_sparam, which(Base.eltype, Tuple{Type{Tuple{Vararg{E}}} where E})) pop!(need_to_handle_undef_sparam, which(Base.eltype, Tuple{Type{Tuple{Any}}})) pop!(need_to_handle_undef_sparam, first(methods(Base.same_names))) @test_broken need_to_handle_undef_sparam == Set() pop!(need_to_handle_undef_sparam, which(Base.cat, Tuple{Any, AbstractArray})) pop!(need_to_handle_undef_sparam, which(Base.byteenv, (Union{AbstractArray{Pair{T}, 1}, Tuple{Vararg{Pair{T}}}} where T<:AbstractString,))) pop!(need_to_handle_undef_sparam, which(Base.LinAlg.promote_leaf_eltypes, (Union{AbstractArray{T}, Tuple{Vararg{T}}} where T<:Number,))) pop!(need_to_handle_undef_sparam, which(Base.LinAlg.promote_leaf_eltypes, (Union{AbstractArray{T}, Tuple{Vararg{T}}} where T<:(AbstractArray{<:Number}),))) pop!(need_to_handle_undef_sparam, which(Base.SparseArrays._absspvec_vcat, (AbstractSparseArray{Tv, Ti, 1} where {Tv, Ti},))) pop!(need_to_handle_undef_sparam, which(Base.SparseArrays._absspvec_hcat, (AbstractSparseArray{Tv, Ti, 1} where {Tv, Ti},))) pop!(need_to_handle_undef_sparam, which(Base.cat, (Any, Base.SparseArrays._TypedDenseConcatGroup{T} where T))) @test need_to_handle_undef_sparam == Set() end end nothing # don't return a module from the remote include